
Real-Time Windows Target 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

Real-Time Windows Target User’s Guide

© COPYRIGHT 1999–2007 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB, Simulink, Stateflow, Handle Graphics, Real-Time Workshop, and xPC TargetBox
are registered trademarks, and SimBiology, SimEvents, and SimHydraulics are trademarks of
The MathWorks, Inc.

Other product or brand names are trademarks or registered trademarks of their respective
holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
January 1999 First printing New for Version 1.0 (Release 11.0)
January 2000 Second printing Revised for Version 1.5 (Release 11.1+)
September 2000 Third printing Revised for Version 2.0 (Release R12)
June 2001 Online only Revised for Version 2.1 (Release R12.1)
July 2002 Online only Revised for Version 2.2 (Release 13)
June 2004 Fourth printing Revised for Version 2.5 (Release 14)
October 2004 Fifth printing Revised for Version 2.5.1 (Release 14SP1)
March 2005 Online only Revised for Version 2.5.2 (Release 14SP2)
September 2005 Online only Revised for Version 2.6 (Release 14SP3)
March 2006 Online only Revised for Version 2.6.1 (Release 2006a)
September 2006 Online only Revised for Version 2.6.2 (Release 2006b)
March 2007 Online only Revised for Version 2.7 (Release 2007a)

Contents

Getting Started

1
What Is Real-Time Windows Target? 1-2

Expected User . 1-3

Features . 1-4
Real-Time Kernel . 1-4
Real-Time Application . 1-6
Signal Acquisition and Analysis . 1-6
Parameter Tuning . 1-7

Hardware Environment . 1-9
PC-Compatible Computer . 1-9
Input/Output Driver Support . 1-9

Software Environment . 1-11
Non-Real-Time Simulation . 1-11
Real-Time Execution . 1-11
Development Process . 1-12

System Concepts . 1-13
Simulink External Mode . 1-13
Data Buffers and Transferring Data 1-14

Installation and Configuration

2
Required Products . 2-2

MATLAB . 2-2
Simulink . 2-2
Real-Time Workshop . 2-3

v

Related Products . 2-4

System Requirements . 2-5
Hardware Requirements . 2-5
Software Requirements . 2-6

Real-Time Windows Target Installed Files 2-7

Initial Working Directory . 2-9
Setting the Working Directory from the Desktop Icon 2-9
Setting the Working Directory from MATLAB 2-9

Real-Time Windows Target Kernel 2-10
Installing the Kernel . 2-10
Uninstalling the Kernel . 2-11

Testing the Installation . 2-14
Running the Model rtvdp.mdl . 2-14
Displaying Status Information . 2-16
Detecting Excessive Sample Rates . 2-17
Demo Library . 2-18

Basic Procedures

3
Simulink Model . 3-2

Creating a Simulink Model . 3-2
Entering Configuration Parameters for Simulink 3-6
Entering Scope Parameters for Signal Tracing 3-7
Running a Non-Real-Time Simulation 3-10
Specifying a Default Real-Time Windows Target

Configuration Set . 3-11

Real-Time Application . 3-13
Entering Simulation Parameters for Real-Time

Workshop . 3-13
Entering Scope Parameters for Signal Tracing 3-16
Creating a Real-Time Application . 3-18

vi Contents

Entering Additional Scope Parameters for Signal
Tracing . 3-19

Running a Real-Time Application . 3-21
Running a Real-Time Application from the MATLAB

Command Line . 3-24

Signal Logging to the MATLAB Workspace 3-26
Entering Scope Parameters . 3-26
Entering Signal and Triggering Properties 3-28
Plotting Logged Signal Data . 3-31

Signal Logging to a Disk Drive . 3-33
Entering Scope Parameters . 3-33
Entering Signal and Triggering Properties 3-36
Entering Data Archiving Parameters 3-38
Plotting Logged Signal Data . 3-40

Parameter Tuning . 3-43
Types of Parameters . 3-43
Changing Model Parameters . 3-44

Advanced Procedures

4
I/O Boards . 4-2

Installing and Configuring I/O Boards and Drivers 4-2
ISA Bus Board . 4-6
PCI Bus Board . 4-7
PC/104 Board . 4-8
Compact PCI Board . 4-8
PCMCIA Board . 4-8

I/O Driver Blocks . 4-9
Real-Time Windows Target Library 4-9
Simulink Library . 4-11
Analog Input Block . 4-12
Analog Output Block . 4-14
Digital Input Block . 4-16
Digital Output Block . 4-17

vii

Counter Input Block . 4-20
Encoder Input Block . 4-22
Other Input and Other Output Blocks 4-24
Output Signals from an I/O Block . 4-24
Variations with Channel Selection . 4-25

Using Analog I/O Drivers . 4-29
I/O Driver Characteristics . 4-29
Normalized Scaling for Analog Inputs 4-30

Troubleshooting

5
Building Older Models . 5-2

Plots Not Visible in Simulink Scope Block 5-3

Failure to Connect to Target . 5-4

Sample Time Too Fast . 5-5

S-Functions Using Math Functions 5-6

Restricted Space for S-Function Local Variables 5-7

Custom I/O Driver Blocks Reference

A
I/O Register Access from S-Functions Limitation A-2

Incompatibility with Win32 API Calls A-3

Unsupported C Functions . A-4

viii Contents

Supported C Functions . A-5

Examples

B
Simulink Model Examples . B-2

Real-Time Application Examples . B-2

Signal Logging to MATLAB Workspace Examples B-2

Signal Logging to Disk Drive Examples B-2

Parameter Tuning Examples . B-3

I/O Board Examples . B-3

Index

ix

x Contents

1

Getting Started

Real-Time Windows Target has many features. An introduction to these
features and the Real-Time Windows Target software environment will help
you develop a model for working with Real-Time Windows Target.

What Is Real-Time Windows Target?
(p. 1-2)

A PC solution for prototyping and
testing real-time systems

Features (p. 1-4) Real-time kernel, real-time
application, signal acquisition and
analysis, and parameter tuning

Hardware Environment (p. 1-9) PC-compatible computer and I/O
support boards

Software Environment (p. 1-11) Non-real-time simulation of
Simulink models and real-time
execution of applications

System Concepts (p. 1-13) Simulink external mode and data
buffers

1 Getting Started

What Is Real-Time Windows Target?
Real-Time Windows Target is a PC solution for prototyping and testing
real-time systems. It is an environment where you use a single computer
as a host and target.

In this environment you use your desktop or laptop PC with MATLAB®,
Simulink®, and Stateflow® (optional) to create models using Simulink blocks
and Stateflow diagrams.

After creating a model and simulating it with Simulink in normal mode, you
can generate executable code with Real-Time Workshop®, Stateflow Coder
(optional), and the Open Watcom C/C++ compiler. Then you can run your
application in real time with Simulink external mode.

Integration between Simulink external mode and Real-Time Windows Target
allows you to use your Simulink model as a graphical user interface for

• Signal visualization — Use the same Simulink Scope blocks that you use
to visualize signals during a non-real-time simulation to visualize signals
while running a real-time application.

• Parameter tuning — Use the Block Parameter dialog boxes to change
parameters in your application while it is running in real time.

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow Simulink
to continue.

Typical applications for Real-Time Windows Target include

• Real-time control — Create a prototype of automotive, computer
peripheral, and instrumentation control systems.

• Real-time hardware-in-the-loop simulation — Create a prototype of
controllers connected to a physical plant. For example, the physical plant
could be an automotive engine. Create a prototype of a plant connected to

1-2

What Is Real-Time Windows Target?

an actual controller. For example, the prototyped plant could be an aircraft
engine.

• Education — Teach concepts and procedures for modeling, simulating,
testing real-time systems, and iterating designs.

Expected User
To benefit from reading this book, you should be familiar with

• Using Simulink and Stateflow to create models as block diagrams, and
simulating those models in Simulink

• The concepts and use of Real-Time Workshop to generate executable code

When using Real-Time Workshop and Real-Time Windows Target, you do not
need to program in C or other low-level programming languages to create
and test real-time systems.

If You Are a New User — Begin with Chapter 1, “Getting Started”. This
chapter gives you an overview of Real-Time Windows Target features and
the development environment. Next, read and try the examples in Chapter
3, “Basic Procedures”.

If You Are an Experienced Real-Time Windows Target User — We suggest you
review the sections on signal tracing and signal logging in Chapter 3, “Basic
Procedures”. After you are familiar with using Real-Time Windows Target,
read how to add I/O drivers to your Simulink model in Chapter 4, “Advanced
Procedures”.

1-3

1 Getting Started

Features
• “Real-Time Kernel” on page 1-4

• “Real-Time Application” on page 1-6

• “Signal Acquisition and Analysis” on page 1-6

• “Parameter Tuning” on page 1-7

The Real-Time Windows Target software environment includes many features
to help you prototype and test real-time applications.

Real-Time Kernel
Real-Time Windows Target uses a small real-time kernel to ensure that
the real-time application runs in real time. The real-time kernel runs at
CPU ring zero (privileged or kernel mode) and uses the built-in PC clock as
its primary source of time:

• Timer interrupt — The kernel intercepts the interrupt from the PC clock
before the Windows operating system receives it. This blocks any calls to
the Windows operating system. Because of this, you cannot use Win32
calls in your C-code S-function.

The kernel then uses the interrupt to trigger the execution of the compiled
model. As a result, the kernel is able to give the real-time application the
highest priority available.

To achieve precise sampling, the kernel reprograms the PC clock to a
higher frequency. Because the PC clock is also the primary source of time
for the Windows operating system, the kernel sends a timer interrupt to
the operating system at the original interrupt rate.

Technically, the kernel is provided as a kernel-mode driver on Windows
2000 and Windows XP.

• Scheduler — The timer interrupt clocks a simple scheduler that runs
the executable. The number of tasks is equal to the number of sampling
periods in the model with multitasking mode. With single-tasking mode,
there is only one task. The maximum number of tasks is 32, and faster
tasks have higher priorities than slower tasks. For example, a faster task
can interrupt a slower task.

1-4

Features

During execution, the executable stores data in buffers. Later, the data in
these buffers is retrieved by the Scope block. The scheduling, data storing,
data transferring, and running the executable all run at CPU ring zero.

• Communication with hardware — The kernel interfaces and
communicates with I/O hardware using I/O driver blocks, and it checks
for proper installation of the I/O board. If the board has been properly
installed, the drivers allow your real-time application to run.

The Analog Input, Analog Output, Digital Input, Digital Output, Counter
Input, and Encoder Input blocks call the drivers for input and output. You
can choose to have a driver block use values equal to voltage, normalize
values from 0 to +1, normalize values from -1 to +1, or use the raw integer
values from the A/D or D/A conversion press. Drivers also run at CPU
ring zero.

• Simulink external mode — Communication between Simulink and the
real-time application is through the Simulink external mode interface
module. This module talks directly to the real-time kernel, and is used to
start the real-time application, change parameters, and retrieve scope data.

Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

• Built-in C compiler — Real-Time Windows Target applications are
compiled with the Open Watcom C/C++ compiler. For your convenience, this
compiler is shipped with Real-Time Windows Target. No other third-party
compilers are necessary or can be used.

Note Real-Time Windows Target always uses the Open Watcom C/C++
compiler, even if you have specified some other compiler using the mex
-setup command. Real-Time Windows Target cannot be configured to use
a compiler other than Open Watcom C/C++.

1-5

1 Getting Started

Real-Time Application
The real-time application runs in real time on your PC computer and has
the following characteristics:

• Compiled code — Created from the generated C-code using the Open
Watcom C/C++ compiler.

• Relation to your Simulink model — The executable contains a binary
form of all Simulink model components, connections between blocks, time
dependencies, and variables in the Simulink blocks.

• Relation to the kernel — The executable must be loaded and executed
directly by the Real-Time Windows Target kernel. It cannot be executed
without the kernel.

The kernel runs as a kernel-mode driver, intercepts timer interrupts from
the PC clock, maintains clock signals for the Windows operating system,
and ensures real-time execution of the real-time application. As a result,
both the kernel and the real-time application run at CPU ring zero.

• Checksum — The Simulink model and the executable contain a checksum
value. The kernel uses this checksum value to determine if the Simulink
model structure, at the time of code generation, is consistent with the
real-time application structure during execution. This ensures that when
you change parameters during an execution, the mapping of Simulink
model parameters to the memory locations in the real-time application is
correct.

If you make structural changes to your Simulink model, the Simulink
checksum value will not match the executable checksum value. You will
have to rebuild your executable before you can connect it to your Simulink
model.

Signal Acquisition and Analysis
You can acquire, display, and save signals by using Simulink Scope blocks and
Simulink external mode. This lets you observe the behavior of your model
during a simulation or your application while it runs in real time.

1-6

Features

You can acquire signal data while running your real-time applications using

• Signal Tracing — Process of acquiring and visualizing signals during a
real-time run. It allows you to acquire signal data and visualize it on your
computer while the executable is running.

• Signal Logging — Process for acquiring signal data during a real-time
run. After the run reaches its final time or you manually stop the run,
you can plot and analyze the data.

You can save (log) data to variables in the MATLAB workspace or save data
to your disk drive with MAT-files.

Signal logging differs from signal tracing. With signal logging you can only
look at a signal after a run is finished.

For more information, see “Signal Logging to the MATLAB Workspace” on
page 3-26 and “Signal Logging to a Disk Drive” on page 3-33.

Parameter Tuning
Change the parameters in your Simulink model and observe the effect of those
changes during a simulation or while running an application in real time.

Simulink external mode — You use Simulink external mode to connect your
Simulink block diagram to your real-time application. The block diagram
becomes a graphical user interface (GUI) to that executable.

Simulink external mode allows you to change parameters by editing the block
diagram while running Simulink in external mode. New parameter values
are automatically transferred to the real-time application while it is running.

Note Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

There are different types of model parameters that you can change while
running your real-time application. For example, parameters include the
amplitude of a gain and the frequency of a sine wave. After you connect your

1-7

1 Getting Started

real-time application to your Simulink model, you can change parameters.
You can change these parameters before or while your real-time application
is running by using one of the following methods:

• Block parameters — Change values in the dialog boxes associated with
the Simulink blocks.

• Block parameters for masked subsystems — Change values in
user-created dialog boxes associated with a subsystem.

• MATLAB variables — Create MATLAB variables that represent
Simulink block parameters, and then change parameter values by entering
the changes through the MATLAB command line.

For more information about parameter tuning, see “Parameter Tuning” on
page 3-43.

1-8

Hardware Environment

Hardware Environment
• “PC-Compatible Computer” on page 1-9

• “Input/Output Driver Support” on page 1-9

The hardware environment consists of a PC-compatible computer and I/O
boards.

PC-Compatible Computer
You can use any PC-compatible computer that runs Windows 2000 or
Windows XP.

Your computer can be a desktop, laptop, or notebook PC.

Input/Output Driver Support
Real-Time Windows Target uses standard and inexpensive I/O boards for
PC-compatible computers. When running your models in real time, Real-Time
Windows Target captures the sampled data from one or more input channels,
uses the data as inputs to your block diagram model, immediately processes
the data, and sends it back to the outside world through an output channel on
your I/O board.

I/O Boards
I/O boards — Real-Time Windows Target supports a wide range of I/O
boards. The list of supported I/O boards includes ISA, PCI, and PCMCIA
boards. This includes analog-to-digital (A/D), digital-to-analog (D/A), digital
inputs, digital outputs, and encoder inputs. In total, over 200 I/O boards are
currently supported.

Note Some of the functions on a board might not be supported by Real-Time
Windows Target. Check the MathWorks Web site for an updated list of
supported boards and functions at Supported I/O Boards.

1-9

http://www.mathworks.com/products/supportedio.html?prodCode=WT

1 Getting Started

I/O Driver Block Library
Real-Time Windows Target provides a custom Simulink block library. The
I/O driver block library contains universal drivers for supported I/O boards.
These universal blocks are configured to operate with the library of supported
drivers. This allows easy location of driver blocks and easy configuration
of I/O boards.

You drag and drop a universal I/O driver block from the I/O library the same
way as you would from a standard Simulink block library. And you connect
an I/O driver block to your model just as you would connect any standard
Simulink block.

You create a real-time application in the same way as you create any other
Simulink model, by using standard blocks and C-code S-functions. You can
add input and output devices to your Simulink model by using the I/O driver
blocks from the rtwinlib library provided with Real-Time Windows Target.
This library contains the following blocks:

• Analog Input

• Analog Output

• Digital Input

• Digital Output

• Counter Input

• Encoder Input

Real-Time Windows Target provides driver blocks for more than 200 I/O
boards. These driver blocks connect the physical world to your real-time
application:

• Sensors and actuators are connected to I/O boards.

• I/O boards convert voltages to numerical values and numerical values to
voltages.

• Numerical values are read from or written to I/O boards by the I/O drivers.

1-10

Software Environment

Software Environment
• “Non-Real-Time Simulation” on page 1-11

• “Real-Time Execution” on page 1-11

• “Development Process” on page 1-12

The software environment is a place to design, build, and test an application
in nonreal time and real time.

Non-Real-Time Simulation
You create a Simulink model and use Simulink in normal mode for
non-real-time simulation on your PC computer.

Simulink model — Create block diagrams in Simulink using simple
drag-and-drop operations, and then enter values for the block parameters and
select a sample rate.

Non-real-time simulation — Simulink uses a computed time vector to step
your Simulink model. After the outputs are computed for a given time value,
Simulink immediately repeats the computations for the next time value. This
process is repeated until it reaches the stop time.

Because this computed time vector is not connected to a hardware clock, the
outputs are calculated in nonreal time as fast as your computer can run. The
time to run a simulation can differ significantly from real time.

Real-Time Execution
For real-time execution on your PC computer, create a real-time application
and use Simulink in external mode. Real-Time Workshop, Real-Time
Windows Target, and the Open Watcom C/C++ compiler produce an executable
that the kernel can run in real time. This real-time application uses the
initial parameters available from your Simulink model at the time of code
generation.

If you use continuous-time components in your model and generate code
with Real-Time Workshop, you must use a fixed-step integration algorithm.
Real-Time Windows Target provides the necessary software that uses the

1-11

1 Getting Started

real-time resources on your computer hardware. Based on your selected
sample rate, Real-Time Windows Target uses interrupts to step your
application in real time at the proper rate. With each new interrupt, the
executable computes all of the block outputs from your model.

Development Process
In the Real-Time Windows Target environment, you use your desktop PC with
MATLAB, Simulink, Real-Time Workshop, and Real-Time Windows Target to

1 Design a control system — Use MATLAB and Control System Toolbox to
design and select the system coefficients for your controller.

2 Create a Simulink model — Use Simulink blocks to graphically model
your physical system.

3 Run a simulation in nonreal time — Check the behavior of your model
before you create a real-time application. For example, you can check the
stability of your model.

4 Create a real-time application — Real-Time Workshop generates C code
from your Simulink model. The Open Watcom C/C++ compiler compiles the
C code to an executable that runs with the Real-Time Windows Target
kernel.

5 Run an application in real time — Your desktop PC is the target
computer to run the real-time application.

6 Analyze and visualize signal data — Use MATLAB functions to plot
data saved to the MATLAB workspace or a disk.

Note Although Real-Time Windows Target applications run on the same
hardware as Windows, the Real-Time Windows Target kernel and the Win32
kernel are incompatible. When a Real-Time Windows Target application
includes externally created code, such as a custom I/O driver block or a
user-supplied S-function, the code cannot access any Win32 function. For
more information, see “Incompatibility with Win32 API Calls” on page A-3.

1-12

System Concepts

System Concepts
• “Simulink External Mode” on page 1-13

• “Data Buffers and Transferring Data” on page 1-14

A more detailed understanding of Real-Time Workshop and Real-Time
Windows Target can help you when creating and running your real-time
applications.

Simulink External Mode
External mode requires a communications interface to pass parameters
external to Simulink, and on the receiving end, the same communications
protocol must be used to accept new parameter values and insert them
in the proper memory locations for use by the real-time application. In
some Real-Time Workshop targets such as Tornado/VME targets, the
communications interface uses TCP/IP protocol. In the case of Real-Time
Windows Target, the host computer also serves as the target computer.
Therefore, only a virtual device driver is needed to exchange parameters
between MATLAB and Simulink memory space and memory that is accessible
by the real-time application.

Signal acquisition — You can capture and display signals from your real-time
application while it is running. Signal data is retrieved from the real-time
application and displayed in the same Simulink Scope blocks you used for
simulating your model.

Parameter tuning — You can change parameters in your Simulink block
diagram and have the new parameters passed automatically to the real-time
application. Simulink external mode changes parameters in your real-time
application while it is running in real time.

Note that if you open a source block to change parameters, the simulation will
pause while the block dialog box is open. You must close the dialog by clicking
OK, which will resume the simulation.

As a user of Real-Time Windows Target, you will find that the requirements
for setup are minimal. You start by enabling external mode. You then
choose the RTW system target file from the Configuration Parameters dialog

1-13

1 Getting Started

Real-Time Workshop tab. The MEX-file interface is automatically selected
when you choose the target file. Then, after you have built the real-time
application, you are ready for external mode operation.

Data Buffers and Transferring Data
At each sample interval of the real-time application, Simulink stores
contiguous data points in memory until a data buffer is filled. Once the
data buffer is filled, Simulink suspends data capture while the data is
transferred back to MATLAB through Simulink external mode. Your real-time
application, however, continues to run. Transfer of data is less critical than
maintaining deterministic real-time updates at the selected sample interval.
Therefore, data transfer runs at a lower priority in the remaining CPU time
after model computations are performed while waiting for another interrupt
to trigger the next model update.

Data captured within one buffer is contiguous. When a buffer of data has been
transferred to Simulink, it is immediately plotted in a Simulink Scope block,
or it can be saved directly to a MAT-file using the data archiving feature of
the Simulink external mode.

With data archiving, each buffer of data can be saved to its own MAT-file. The
MAT-filenames can be automatically incremented, allowing you to capture
and automatically store many data buffers. Although points within a buffer
are contiguous, the time required to transfer data back to Simulink forces an
intermission for data collection until the entire buffer has been transferred
and may result in lost sample points between data buffers.

1-14

2

Installation and
Configuration

Real-Time Windows Target requires the installation of MATLAB, Simulink,
Real-Time Workshop, and the Real-Time Windows Target kernel. Also, make
sure you set your working directory outside the MATLAB root directory.

Required Products (p. 2-2) MATLAB, Simulink, Real-Time
Workshop, and Real-Time Windows
Target

Related Products (p. 2-4) The MathWorks provides several
products that are especially relevant
to the kinds of tasks you can perform
with Real-Time Windows Target.

System Requirements (p. 2-5) Use any PC-compatible computer
with MATLAB, Simulink, Real-Time
Workshop, and Real-Time Windows
Target

Real-Time Windows Target Installed
Files (p. 2-7)

Describes installed files that are
unique to Real-Time Windows Target

Initial Working Directory (p. 2-9) Select a directory outside the
MATLAB root directory

Real-Time Windows Target Kernel
(p. 2-10)

Install the kernel after installing
Real-Time Windows Target

Testing the Installation (p. 2-14) Use the Simulink model rtvdp.mdl
to test the build process and a
real-time application

2 Installation and Configuration

Required Products
• “MATLAB” on page 2-2

• “Simulink” on page 2-2

• “Real-Time Workshop” on page 2-3

Real-Time Windows Target is a self-targeting system where the host and the
target computer are the same computer. You can install it on a PC-compatible
computer running Windows 2000 or Windows XP. Real-Time Windows Target
requires the products described in this section.

MATLAB
MATLAB provides the design and analysis tools that you use when creating
Simulink block diagrams.

MATLAB documentation — For information on using MATLAB, see Getting
Started with MATLAB, which explains how to work with data and how to use
the functions supplied with MATLAB. For a reference describing the functions
supplied with MATLAB, see MATLAB Function Reference.

Simulink
Simulink provides an environment where you model your physical system and
controller as a block diagram. You create the block diagram by using a mouse
to connect blocks and a keyboard to edit block parameters. C code S-functions
are supported by Real-Time Workshop.

Unsupported Simulink blocks — You can use Real-Time Windows Target
with most Simulink blocks including discrete-time and continuous-time
systems. Real-Time Windows Target does not support blocks that do not run
in real time nor does it support To File blocks.

Limitations with Real-Time Workshop — When you use a continuous-time
system and generate code with Real-Time Workshop, you must use a fixed-step
integration algorithm. However, M-code S-functions are not supported.

Real-Time Windows Target I/O driver blocks — With Real-Time
Windows Target, you can remove the physical system model and replace it

2-2

Required Products

with I/O driver blocks connected to your sensors and actuators. The Real-Time
Windows Target I/O library supports more than 200 boards.

Note Some of the functions on a board may not be supported by Real-Time
Windows Target. Check the MathWorks Web site for an updated list of
supported boards and functions at Supported I/O Boards.

Simulink documentation — For information on Simulink, see Using Simulink,
which explains how to connect blocks to build models and change block
parameters. It also provides a reference that describes each block in the
standard Simulink library.

Real-Time Workshop
Real-Time Workshop provides the utilities to convert your Simulink models
into C code, and then, with the Open Watcom C/C++ compiler, compile the
code into a real-time executable.

Real-Time Windows Target is designed for maximum flexibility during rapid
prototyping. This flexibility allows parameter tuning and signal tracing
during a real-time run, but increases the size of the generated code. However,
Real-Time Workshop has other code formats that generate the more compact
code needed for embedded applications.

Real-Time Workshop documentation — For information on code generation,
see the Real-Time Workshop User’s Guide.

2-3

http://www.mathworks.com/products/supportedio.html?prodCode=WT

2 Installation and Configuration

Related Products
The MathWorks provides several products that are especially relevant to the
kinds of tasks you can perform with Real-Time Windows Target.

For more information about any of these products, see either

• The online documentation for that product if it is installed on your system

• The MathWorks Web site, at
http://www.mathworks.com/products/rtwt/related.jsp.

2-4

http://www.mathworks.com/products/rtwt/related.jsp

System Requirements

System Requirements
• “Hardware Requirements” on page 2-5

• “Software Requirements” on page 2-6

Real-Time Windows Target requires a PC-compatible computer.

Hardware Requirements
The following table lists the minimum hardware resources Real-Time
Windows Target requires on your computer.

Hardware Description

CPU Pentium or higher in a desktop, laptop, or compact
PCI or PC104 industrial computer

Peripherals Hard disk drive with 16 megabytes of free space

Data acquisition board (for a list of supported boards,
see Supported I/O Boards)

DVD drive

RAM 128 megabytes minimum, 256 megabytes
recommended

When you are using a laptop computer, Real-Time Windows Target is a
portable environment where your computer uses PCMCIA cards to interface
to real world devices.

2-5

http://www.mathworks.com/products/supportedio.html?prodCode=WT

2 Installation and Configuration

Software Requirements
Real-Time Windows Target 2.7 has certain product prerequisites that must be
met for proper installation and execution.

The following table lists the software you need to install on your computer
to run Real-Time Windows Target.

• Supported Windows OS

• MATLAB 7.4

• Simulink 6.6

• Real-Time Workshop 6.6

• Real-Time Windows Target 2.7

2-6

Real-Time Windows Target Installed Files

Real-Time Windows Target Installed Files
You can install Real-Time Windows Target as part of the regular installation
process documented in MathWorks installation guides. This section describes
installed files that are unique to Real-Time Windows Target. When using the
product, you may find it helpful to know where these files are located.

• MATLAB working directory — Simulink models (model.mdl) and the
Real-Time Windows Target executable (model.rwd)

Note Select a working directory outside the MATLAB root. See “Initial
Working Directory” on page 2-9.

• Real-Time Workshop project directory — The Real-Time Workshop
C-code files (model.c, model.h) are in a subdirectory called model_rtwin.

• Real-Time Windows Target Files — The files included with Real-Time
Windows Target are located in the directory

matlabroot\toolbox\rtw\targets\rtwin

• Open Watcom C/C++ compiler directory — The Open Watcom C/C++
compiler files are located in a subdirectory called openwat.

Real-Time Windows Target provides files to help Real-Time Workshop
generate C code from your Simulink model and compile that code to a
real-time executable:

• System Target File (rtwin.tlc) — Defines the process of generating C
code for Real-Time Windows Target.

• Template Makefile and Makefile (rtwin.tmf, model_name.mk) — The
template makefile serves as a template for generating the real makefile,
which the make utility uses during model compilation. During the
automatic build procedure, the make command extracts information
from the template makefile rtwintmf.m and generates the makefile
model_name.mk.

• Make Command (make_rtw.m) — The standard make command supplied
with Real-Time Workshop.

2-7

2 Installation and Configuration

Other files provided with Real-Time Windows Target include

• I/O drivers (*.rwd) — Binaries for I/O device drivers. Real-Time Windows
Target does not link the driver object files with your real-time executable.
The drivers are loaded into memory and run by the kernel separately.

• Simulink external mode interface (rtwinext.mex*) — MEX-file for
communicating between Simulink external mode and the Real-Time
Windows Target kernel.

Simulink external mode uses the MEX-file interface module to download
new parameter values to the real-time model and to retrieve signals from
the real-time model. You can display these signals in Simulink Scope blocks.

• Kernel install and uninstall commands (rtwintgt.m, rtwho.m) —
M-file scripts to install and uninstall the Real-Time Windows Target kernel
and check installation.

2-8

Initial Working Directory

Initial Working Directory
• “Setting the Working Directory from the Desktop Icon” on page 2-9

• “Setting the Working Directory from MATLAB” on page 2-9

Set your MATLAB working directory outside the MATLAB root directory. The
default MATLAB root directory is c:\matlabN, where N is the MATLAB
version number.

Setting the Working Directory from the Desktop Icon
Your initial working directory is specified in the shortcut file you use to start
MATLAB. To change this initial directory, use the following procedure:

1 Right-click the MATLAB desktop icon, or from the program menu,
right-click the MATLAB shortcut.

2 Click Properties. In the Start in text box, enter the directory path you
want MATLAB to use initially outside the MATLAB root directory.

3 Click OK, and then start MATLAB. To check your working directory, type

pwd or cd

Setting the Working Directory from MATLAB
Use the following procedure as an alternative, but temporary, procedure for
setting your MATLAB working directory:

1 In the MATLAB Command Window, type

cd c:\mwd

2 Check the current working directory, type

cd

MATLAB displays

ans = c:\mwd or c:\mwd

2-9

2 Installation and Configuration

Real-Time Windows Target Kernel
• “Installing the Kernel” on page 2-10

• “Uninstalling the Kernel” on page 2-11

A key component of Real-Time Windows Target is a real-time kernel that
interfaces with the Windows operating system in a way that allows your
real-time executable to run at your selected sample rate. The kernel assigns
the highest priority of execution to your real-time executable.

Installing the Kernel
During installation, all software for Real-Time Windows Target is copied
onto your hard drive. The kernel, although copied to the hard drive, is not
automatically installed. Installing the kernel sets up the kernel to start
running in the background each time you start your computer.

After you install Real-Time Windows Target, you can install the kernel. You
need to install the kernel before you can run a Real-Time Windows Target
executable:

1 In the MATLAB window, type

rtwintgt -install

MATLAB displays the message

You are going to install the Real-Time Windows Target kernel.
Do you want to proceed? [y] :

2 Continue installing the kernel. Type

y

MATLAB installs the kernel and displays the message

The Real-Time Windows Target kernel has been successfully
installed.

2-10

Real-Time Windows Target Kernel

If a message is displayed asking you to restart your computer, you need to
restart your computer before the kernel runs correctly.

3 Check that the kernel was correctly installed. Type

rtwho

MATLAB should display a message that shows the kernel version number,
followed by performance, timeslice, and other information.

Once the kernel is installed, you can leave it installed. After you have
installed the kernel, it remains idle, which allows Windows to control
the execution of any standard Windows application. Standard Windows
applications include internet browsers, word processors, MATLAB, and so on.

It is only during real-time execution of your model that the kernel intervenes
to ensure that your model is given priority to use the CPU to execute each
model update at the prescribed sample intervals. Once the model update at a
particular sample interval completes, the kernel releases the CPU to run any
other Windows application that might need servicing.

Uninstalling the Kernel
If you encounter any problems with Real-Time Windows Target, you can
uninstall the kernel. The kernel executable file remains on your hard drive
so that you can reinstall it:

1 In the MATLAB window, type

rtwintgt -uninstall

MATLAB displays the message

You are going to uninstall the Real-Time Windows Target kernel.

Do you want to proceed? [y]:

2 To continue uninstalling the kernel, type

y

2-11

2 Installation and Configuration

MATLAB uninstalls the kernel by removing it from memory and displays
the message

The Real-Time Windows Target kernel has been successfully
uninstalled.

3 To check that the kernel was correctly uninstalled, type

rtwho

MATLAB should display the following message.

Once uninstalled, the kernel is no longer active, and has no impact on the
operation of your computer.

There are two additional ways to uninstall the Real-Time Windows Target
kernel. They are useful if you uninstall MATLAB before you uninstall the
kernel.

To uninstall the kernel, click the MATLAB Start button, and select Simulink
> Real-Time Windows Target > Uninstall real-time kernel.

Alternately, from the DOS prompt of your computer, type

rtwintgt -uninstall

and the kernel will uninstall from your system. Typing

rtwintgt -forceuninstall

forcibly deregisters the kernel from the operating system without deleting any
files. This option should only be used when all other attempts to uninstall

2-12

Real-Time Windows Target Kernel

the kernel fail. This command can be used both within MATLAB and at the
DOS prompt.

2-13

2 Installation and Configuration

Testing the Installation
• “Running the Model rtvdp.mdl” on page 2-14

• “Displaying Status Information” on page 2-16

• “Detecting Excessive Sample Rates” on page 2-17

• “Demo Library” on page 2-18

Real-Time Widows Target includes several demo models. You can use one of
the demo models to test your installation. Demo models simplify testing of
your installation since they are configured with settings that include the
correct target, scope settings, sample time, and integration algorithm.

Once you have completed the installation of Real-Time Windows Target
and the kernel, we recommend a quick test by at least running the model
rtvdp.mdl. If you change your installation, we also recommend doing this
test as a quick check to confirm that Real-Time Windows Target is still
working.

Running the Model rtvdp.mdl
The model rtvdp.mdl does not have any I/O blocks, so that you can run this
model regardless of the I/O boards in your computer. Running this model will
test the installation by running Real-Time Workshop, Real-Time Windows
Target, and the Real-Time Windows Target kernel.

After you have installed the Real-Time Windows Target kernel, you can
test the entire installation by building and running a real-time application.
Real-Time Windows Target includes the model rtvdp.mdl, which already has
the correct Real-Time Workshop options selected for you:

1 In the MATLAB window, type

rtvdp

The Simulink model rtvdp.mdl window opens.

2-14

Testing the Installation

2 From the Tools menu, choose Real-Time Workshop > Build Model.

The MATLAB window displays the following messages:

Starting Real-Time Workshop build for model: rtvdp

Invoking Target Language Compiler on rtvdp.rtw

. . .

Compiling rtvdp.c

. . .

Created Real-Time Windows Target module rtvdp.rwd.

Successful completion of Real-Time Workshop build procedure

for model: rtvdp

3 From the Simulation menu, click External, and then click Connect to
target.

The MATLAB window displays the following message:

Model rtvdp loaded

2-15

2 Installation and Configuration

4 From Simulation menu, click Start Real-Time Code.

The Scope window displays the output signals. If your Scope window looks
like the next figure, you have successfully installed Real-Time Windows
Target and have run a real-time application.

5 From Simulation menu, click Stop Real-Time Code.

The real-time application stops running, and the Scope window stops
displaying the output signals.

Displaying Status Information
Real-Time Windows Target provides the command rtwho for displaying
the kernel version number, followed by performance, timeslice, and other
information. To see this information, in the MATLAB Command Window type

rtwho

2-16

Testing the Installation

The command displays several lines of information in the MATLAB Command
Window. Some possible lines and their interpretations are:

MATLAB performance = 100.0%

This message indicates that MATLAB and other non-real-time applications
(for example, a word processor) are able to run at 100% performance
because no real-time applications are currently executing. When a real-time
application is executing, the MATLAB performance is at a value below
100%. For example, if the MATLAB performance = 90.0%, then the real-time
application is using 10% of the CPU time. We recommend that you select a
sample rate so that rtwho returns a MATLAB performance of at least 80%.

Kernel timeslice period = 1 ms

The kernel time slice period is the current frequency of the hardware timer
interrupt. One millisecond is the maximum value for models with large
sample times (slow sampling rate) or when an application has not been built.
This value changes when you select sampling times less than 1 millisecond.

TIMERS: Number Period Running
1 0.01 Yes

The indicated timer(s) exist on your system with the period and run status
shown for each timer.

DRIVERS: Name Address Parameters
Humusoft AD512 0x300 []

ecg 0 []

The indicated device driver(s) are installed on your system at the address and
with the parameter(s) shown for each driver.

Detecting Excessive Sample Rates
If your specified sample rate is too fast, Real-Time Windows Target detects
and reports this during real-time execution. Sampling rates exceeding 10 kHz
can be achieved on Pentium computers. Once the model is running, you can
issue the rtwho command in the MATLAB Command Window to observe the
system performance.

2-17

2 Installation and Configuration

For example, the following lines show that MATLAB performance has
decreased because the system is overloaded:

MATLAB performance = 77.1%
Kernel timeslice period = 0.001 ms

We recommend that MATLAB performance not fall below 80%.

Demo Library
The demo library includes models with preset values and dialog boxes. These
models include a configuration of examples that use no I/O, A/D only, A/D and
D/A in a simple signal processing demo, as well as in a simple control demo.

Examples that use I/O blocks require you to configure the Adapter block to
match the I/O board installed in your computer:

1 In the MATLAB window, type

rtwtdemo

The rtwtdemo window opens and displays the demo models provided with
Real-Time Windows Target.

2 Double-click a demo block to open the model.

2-18

3

Basic Procedures

The basic procedures explain how to create a Simulink or real-time
application, and how to run a simulation or execution.

Simulink Model (p. 3-2) Create a Simulink model and run a
non-real-time simulation

Real-Time Application (p. 3-13) Create a real-time application,
generate code from that model, and
run a real-time execution

Signal Logging to the MATLAB
Workspace (p. 3-26)

Save data from a simulation or
execution, and then analyze or
visualize that data

Signal Logging to a Disk Drive
(p. 3-33)

Save data from a real-time execution,
and then analyze or visualize that
data

Parameter Tuning (p. 3-43) Change parameters in your
application while it is running in
real time

3 Basic Procedures

Simulink Model
• “Creating a Simulink Model” on page 3-2

• “Entering Configuration Parameters for Simulink” on page 3-6

• “Entering Scope Parameters for Signal Tracing” on page 3-7

• “Running a Non-Real-Time Simulation” on page 3-10

• “Specifying a Default Real-Time Windows Target Configuration Set” on
page 3-11

A Simulink model is a graphical representation of your physical system. You
create a Simulink model for a non-real-time simulation of your system, and
then you use the Simulink model to create a real-time application.

Creating a Simulink Model
This procedure explains how to create a simple Simulink model. You use this
model as an example to learn other procedures in Real-Time Windows Target.

You need to create a Simulink model before you can run a simulation or create
a real-time application:

1 In the MATLAB Command Window, type

simulink

The Simulink Library Browser window opens.

3-2

Simulink Model

2 From the toolbar, click the Create a new model button.

An empty Simulink window opens:

3 In the Simulink Library Browser window, double-click Simulink, and then
double-click Sources. Click and drag Signal Generator to the Simulink
window.

Click Continuous. Click and drag Transfer Fcn to the Simulink window.

Click Sinks. Click and drag Scope to the Simulink window.

4 Connect the Signal Generator output to the Transfer Fcn input by
clicking-and-dragging a line between the blocks. Likewise, connect the
Transfer Fcn output to the Scope input.

5 Double-click the Transfer Fcn block. The Block Parameters dialog box
opens. In the Numerator text box, enter

[10000]

3-3

3 Basic Procedures

In the Denominator text box, enter

[1 70 10000]

Your Block Parameters dialog box looks similar to the next figure.

6 Click OK.

7 Double-click the Signal Generator block. The Block Parameters dialog box
opens. From the Wave form list, select square.

In the Amplitude text box, enter

1

In the Frequency text box, enter

20

From the Units list, select rad/sec.

3-4

Simulink Model

Your Block Parameters dialog box looks similar to the next figure.

8 Click OK.

The next figure shows the completed Simulink block diagram, with toolbar
and status bar not shown:

9 From the File menu, click Save As. The Save As dialog box opens. In the
File name text box, enter a filename for your Simulink model and click
Save. For example, type

rtwin_model

Simulink saves your model in the file rtwin_model.mdl.

3-5

3 Basic Procedures

To specify a default Real-Time Windows Target configuration set for your
model, see “Specifying a Default Real-Time Windows Target Configuration
Set” on page 3-11. If you activate this configuration set for your model,
you can build your real-time application later without setting additional
configuration parameters.

To manually configure your model, continue to “Entering Configuration
Parameters for Simulink” on page 3-6, following. That section teaches
you how to enter configuration parameters for your Simulink model, then
leads you into procedures for entering scope parameters and running a
non-real-time simulation of the model.

Entering Configuration Parameters for Simulink
The configuration parameters give information to Simulink for running a
simulation.

After you create a Simulink model, you can enter the configuration parameters
for Simulink. This procedure uses the Simulink model rtwin_model.mdl as
an example and assumes you have already loaded that model:

1 In the Simulink window, and from the Simulation menu, click
Configuration Parameters. In the Configuration Parameters dialog box,
click the Solver tab.

The Solver pane opens.

2 In the Start time field, enter 0.0. In the Stop time field, enter the amount
of time you want your model to run. For example, enter 10.0 seconds.

3 From the Type list, choose Fixed-step. Real-Time Workshop does not
support variable step solvers.

4 From the Solver list, choose a solver. For example, choose the general
purpose solver ode5 (Dormand-Prince).

5 In the Fixed step size field, enter a sample time. For example, enter
0.001 seconds for a sample rate of 1000 samples/second.

6 From the Tasking Mode list, choose SingleTasking. (For models with
blocks that have different sample times, choose MultiTasking.)

3-6

Simulink Model

Your Solver pane looks similar to the next figure.

7 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

Entering Scope Parameters for Signal Tracing
You enter or change scope parameters to specify the x-axis and y-axis in a
Scope window. Other properties include the number of graphs in one Scope
window and the sample time for models with discrete blocks.

After you add a Scope block to your Simulink model, you can enter the scope
parameters for signal tracing:

1 In the Simulink window, double-click the Scope block.

A Scope window opens.

3-7

3 Basic Procedures

2 Click the Parameters button.

A Scope parameters dialog box opens.

3 Click the General tab. In the Number of axes field, enter the number of
graphs you want in one Scope window. For example, enter 1 for a single
graph. Do not select the floating scope check box.

In the Time range field, enter the upper value for the time range. For
example, enter 1 second. From the Tick labels list, choose all.

From the Sampling list, choose Sample time and enter 0 in the text box.
Entering 0 indicates that Simulink evaluates this block as a continuous
time block. If you have discrete blocks in your model, enter the Fixed step
size you entered in the Configuration Parameters dialog box.

Your Scope parameters dialog box looks similar to the next figure.

3-8

Simulink Model

4 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

5 In the Scope window, point to the y-axis shown in the next figure, and
right-click.

6 From the pop-up menu, click Axes Properties.

7 The Scope properties: axis 1 dialog box opens. In the Y-min and Y-max
text boxes, enter the range for the y-axis in the Scope window. For example,
enter -2 and 2 as shown in the next figure.

3-9

3 Basic Procedures

8 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

Running a Non-Real-Time Simulation
You use Simulink in normal mode to run a non-real-time simulation. Running
a simulation lets you observe the behavior of your model in nonreal time.

After you load your Simulink model into the MATLAB workspace, you can
run a simulation. This procedure uses the Simulink model rtwin_model.mdl
as an example and assumes you have loaded that model:

1 In the Simulink window, double-click the Scope block.

Simulink opens a Scope window with an empty graph.

2 From the Simulation menu, click Normal, and then click Start.

Simulink runs the simulation and plots the signal data in the Scope window.

During the simulation, the Scope window displays the samples for one
time range, increases the time offset, and then displays the samples for
the next time range.

3-10

Simulink Model

3 Do one of the following:

• Let the simulation run to the stop time.

• From the Simulation menu, click Stop.

The simulation stops. MATLAB does not display any messages.

Specifying a Default Real-Time Windows Target
Configuration Set
The preceding sections describe how to use the Simulink Configuration
Parameters dialog to configure simulation parameters for a Simulink model.
To quickly configure a Simulink model for default Real-Time Windows Target
behavior, use the default Real-Time Windows Target configuration set.

A configuration set is a named set of values for model parameters, such as
solver type and simulation start or stop time. Every new model is created
with a default configuration set, called Configuration, that initially specifies
default values for the model’s model parameters. You can subsequently create
additional configuration sets and associate them with the model. See the
Simulink documentation for further details on configuration sets.

3-11

3 Basic Procedures

After you create a Simulink model, you can specify a default Real-Time
Windows Target configuration set for the model. This procedure uses the
Simulink model rtwin_model.mdl as an example and assumes you have
already loaded that model (see “Creating a Simulink Model” on page 3-2):

1 If you have not already saved the model, from the File menu, click Save
As. The Save As dialog box opens. In the File name text box, enter a
filename for your Simulink model and click Save. For example, type

rtwin_model

Simulink saves your model in the file rtwin_model.mdl.

2 In the MATLAB window, type

rtwinconfigset('rtwin_model')

The default Real-Time Windows Target configuration set, RTWin, is
active for the rtwin_model model. You do not need to perform any other
configuration to build a Real-Time Windows Target application.

3 Save the model.

See “Creating a Real-Time Application” on page 3-18 for a description of how
to build your Real-Time Windows Target application.

Note To revert to the default configuration set, Configuration, or any other
configuration set you have for the model, use Model Explorer. This is an
alternative tool that you can use to enter simulation parameters for a model.
This document does not describe how to use the Model Explorer. See the
Simulink documentation for a description of how to use Model Explorer.

3-12

Real-Time Application

Real-Time Application
• “Entering Simulation Parameters for Real-Time Workshop” on page 3-13

• “Entering Scope Parameters for Signal Tracing” on page 3-16

• “Creating a Real-Time Application” on page 3-18

• “Entering Additional Scope Parameters for Signal Tracing” on page 3-19

• “Running a Real-Time Application” on page 3-21

• “Running a Real-Time Application from the MATLAB Command Line”
on page 3-24

You create a real-time application to let your system run while synchronized
to a real-time clock. This allows your system to control or interact with
an external system. This is necessary if you use your system to stabilize
a physical plant.

The process of creating and running a real-time application includes the
creation of a Simulink Model from the previous section:

• “Creating a Simulink Model” on page 3-2

• “Entering Configuration Parameters for Simulink” on page 3-6

• “Specifying a Default Real-Time Windows Target Configuration Set” on
page 3-11

Entering Simulation Parameters for Real-Time
Workshop
After you create a Simulink model, you can enter the simulation parameters
for Real-Time Workshop. The simulation parameters are used by Real-Time
Workshop for generating C code and building a real-time application.

3-13

3 Basic Procedures

This procedure uses the Simulink model rtwin_model.mdl as an example and
assumes you have already loaded that model:

1 In the Simulink window, and from the Simulation menu, click
Configuration Parameters.

2 Click the Hardware Implementation node.

3 From the Device type list, choose 32-bit Real-Time Windows Target.

4 Under Emulation hardware, select None.

5 Click the Real-Time Workshop node.

The Real-Time Workshop pane opens.

6 In the Target selection section, click the Browse button at the RTW
system target file list.

The System Target File Browser opens.

3-14

Real-Time Application

7 Select the system target file for Real-Time Windows Target and click OK.

The system target file rtwin.tlc, the template makefile rtwin.tmf,
and the make command make_rtw are automatically entered into the
Real-Time Workshop pane.

Although not visible in the Real-Time Workshop pane, the external
target interface MEX file rtwinext is also configured when you click
OK. This allows external mode to pass new parameters to the real-time
application and to return signal data from the real-time application. The
data is displayed in Scope blocks or saved with signal logging.

Your Real-Time Workshop pane looks similar to the next figure.

Do not select Inline parameters on the Optimization node. Inlining
parameters is used for custom targets when you want to reduce the amount
of RAM or ROM with embedded systems. Also, if you select inlining
parameters, the parameter tuning feature is disabled. Since PCs have
more memory than embedded systems, we recommend that you do not
inline parameters.

3-15

3 Basic Procedures

8 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

Entering Scope Parameters for Signal Tracing
You enter or change scope parameters to format the x-axis and y-axis in a
Scope window. Other parameters include the number of graphs in a one Scope
window and whether the scope is connected to a continuous or discrete model.

If you entered the scope parameters for running a simulation, you can skip this
procedure. This information is repeated here if you did not run a simulation.

After you add a Scope block to your Simulink model, you can enter the scope
parameters for signal tracing:

1 In the Simulink window, double-click the Scope block.

A Scope window opens.

2 Click the Parameters button.

A Scope parameters dialog box opens.

3 Click the General tab. In the Number of axes field, enter the number of
graphs you want in one Scope window. For example, enter 1 for a single
graph. Do not select the floating scope check box.

In the Time range field, enter the upper value for the time range. For
example, enter 1 second. From the Tick labels list, choose all.

From the Sampling list, choose Sample time and enter 0 in the text box.
Entering 0 indicates that Simulink evaluates this block as a continuous
time block. If you have discrete blocks in your model, enter the Fixed step
size you entered in the Configuration Parameters dialog box.

3-16

Real-Time Application

Your Scope parameters dialog box looks similar to the next figure.

4 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

5 In the Scope window, point to the y-axis and right-click. From the menu,
click Axes Properties.

The Scope properties: axis 1 dialog box opens.

6 In the Y-min and Y-max text boxes enter the range for the y-axis in the
Scope window. For example, enter -2 and 2.

3-17

3 Basic Procedures

7 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

Creating a Real-Time Application
Real-Time Workshop generates C code from your Simulink model, then the
Open Watcom C/C++ compiler compiles and links that C code into a real-time
application.

After you enter parameters into the Configuration Parameters dialog box for
Real-Time Workshop, you can build a real-time application. This procedure
uses the Simulink model rtwin_model.mdl as an example, and assumes you
have loaded that model:

1 In the Simulink window, and from the Tools menu, point to Real-Time
Workshop, and then click Build Model.

The build process does the following:

• Real-Time Workshop creates the C code source files rtwin_model.c
and rtwin_model.h.

• The make utility make_rtw.exe creates the makefile rtwin_model.mk
from the template makefile rtwin.tmf.

• The make utility make_rtw.exe builds the real-time application
rtwin_model.rwd using the makefile rtwin_model.mk created above.
The file rtwin_model.rwd is a binary file that we refer to as your
real-time application. You can run the real-time application with the
Real-Time Windows Target kernel.

2 Connect your Simulink model to your real-time application. See “Entering
Additional Scope Parameters for Signal Tracing” on page 3-19.

After you create a real-time application, you can exit MATLAB, start MATLAB
again, and then connect and run the executable without having to rebuild.

3-18

Real-Time Application

Entering Additional Scope Parameters for Signal
Tracing
Simulink external mode connects your Simulink model to your real-time
application. This connection allows you to use the Simulink block diagram as
a graphical user interface to your real-time application.

After you have created a real-time application, you can enter scope parameters
for signal tracing with Simulink external mode:

1 In the Simulation window, and from the Simulation menu, click
Configuration Parameters.

2 Select the Real-Time Windows Target node.

The Real-Time Windows Target pane opens.

3 Select the External mode check box.

The MEX-file name label should have an entry of rtwinext. The MEX-file
rtwinext.mex* is supplied with Real-Time Windows Target to work
with Simulink external mode and support uploading signal data and
downloading parameter values.

The Real-Time Windows Target pane should appear as follows.

3-19

3 Basic Procedures

4 Click OK.

5 In the Simulation window, and from the Tools menu, click External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

6 Click the Signal & Triggering button.

The External Signal & Triggering dialog box opens.

7 Select the Select all check box. From the Source list, choose manual.
From the Mode list, choose normal.

The X under Signal selection indicates that a signal is tagged for data
collection, and T indicates that the signal is tagged as a trigger signal.

8 In the Duration field, enter the number of sample points in a data buffer.
For example, to specify a sample rate of 1000 samples/second and a stop
time of 10 seconds, enter

10000

3-20

Real-Time Application

9 Select the Arm when connecting to target check box.

If you do not select this check box, data is not displayed in the Scope window.

The External Signal & Triggering dialog box looks like this:

10 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click Close to apply the changes to your model and close the dialog box.

You must click the Apply or Close button on the External Signal &
Triggering dialog box for the changes you made to take effect. Generally it
is not necessary to rebuild your real-time application.

Running a Real-Time Application
You run your real-time application to observe the behavior of your model in
real time with the generated code. The process of connecting consists of

• Establishing a connection between your Simulink model and the kernel to
allow exchange of commands, parameters, and logged data.

• Running the application in real time.

3-21

3 Basic Procedures

After you build the real-time application, you can run your model in real time.
This procedure uses the Simulink model rtwin_model.mdl as an example,
and assumes you have created a real-time application for that model:

1 From the Simulation menu, click External, then from the Simulation
menu click Connect To Target. Also, you can connect to the target from

the toolbar by clicking .

MATLAB displays the message

Model rtwin_model loaded

2 In the Simulation window, and from the Simulation menu, click Start
Real-Time Code. You can also start the execution from the toolbar by

clicking .

3-22

Real-Time Application

Simulink runs the execution and plots the signal data in the Scope window.

In this example, the Scope window displays 1000 samples in 1 second,
increases the time offset, and then displays the samples for the next 1
second.

Note Transfer of data is less critical than calculating the signal outputs
at the selected sample interval. Therefore, data transfer runs at a
lower priority in the remaining CPU time after real-time application
computations are performed while waiting for another interrupt to trigger
the next real-time application update. The result may be a loss of data
points displayed in the Scope window.

3 Do one of the following:

• Let the execution run until it reaches the stop time.

• From the Simulation menu, click Stop Real-time Code.

The real-time application stops.

4 In the Simulation window, and from the Simulation menu, click
Disconnect From Target.

3-23

3 Basic Procedures

5 From the Simulation menu, click External.

MATLAB displays the message

Model rtwin_model unloaded

Running a Real-Time Application from the MATLAB
Command Line
You can use the MATLAB command-line interface as an alternative to using
the Simulink GUI. Enter commands directly in the MATLAB window or enter
them in an M-file.

After you build the real-time application, you can run your model in real time.
This procedure uses the Simulink model rtwin_model.mdl as an example,
and assumes you have created a real-time application for that model:

1 In the MATLAB window, type

set_param(gcs,'SimulationMode','external')

Simulink changes to external mode.

2 Type

set_param(gcs,'SimulationCommand','connect')

MATLAB loads the real-time application, connects it to the Simulink block
diagram, and displays the message

Model rtwin_model loaded

3 Type

set_param(gcs,'SimulationCommand','start')

Simulink starts running the real-time application.

3-24

Real-Time Application

4 Type

set_param(gcs,'SimulationCommand','stop')

Simulink stops the real-time application.

3-25

3 Basic Procedures

Signal Logging to the MATLAB Workspace
• “Entering Scope Parameters” on page 3-26

• “Entering Signal and Triggering Properties” on page 3-28

• “Plotting Logged Signal Data” on page 3-31

Signal logging is the process of saving (logging) data to a variable in your
MATLAB workspace or to a MAT-file on your disk drive. This allows you to
use MATLAB functions for data analysis and MATLAB plotting functions for
visualization. You can save data to a variable during a simulation or during
an execution.

To use signal logging with Real-Time Windows Target, you must add a Scope
block to your Simulink model.

Simulink external mode does not support data logging with Outport blocks in
your Simulink model. This means you do not enter or select parameters on
the Data I/O tab in the Configuration Parameters dialog box.

Entering Scope Parameters
Data is saved to the MATLAB workspace through a Simulink Scope block.
Scope block parameters need to be set for data to be saved.

After you create a Simulink model and add a Scope block, you can enter
the scope parameters for signal logging to the MATLAB workspace. This
procedure uses the Simulink model rtwin_model.mdl as an example, and
assumes you have already loaded that model.

Note If you entered the scope parameters for running a simulation, you may
want to look over this procedure, because the Scope parameters dialog box is
related to the External Signal and Triggering dialog box.

3-26

Signal Logging to the MATLAB Workspace

1 In the Simulink window, double-click the Scope block.

A Scope window opens.

2 On the toolbar, click Parameters.

A Scope Parameters dialog box opens.

3 Click the Data history tab.

4 Do one of the following:

• If you are running a simulation, select the Limit data points to last
check box, and enter the number of sample points to save.

• If you are running an execution, do not select the Limit data points to
last check box.

The Limit data points to last check box is related to the Duration value
in the External Signal and Triggering dialog box. The smaller of either
value limits the number of sample points saved to the MATLAB workspace.
When you are using Real-Time Windows Target, use the Duration value
to set the number of sample points you save. To set the Duration value,
see the next section.

5 Select the Save data to workspace check box. In the Variable name
text box, enter the name of a MATLAB variable. The default name is
ScopeData.

6 From the Format list, choose Structure with time, Structure, or Array
(compatible with V2.0-2.2). For example, to save the sample times and
signal values at those times, choose Structure with time.

3-27

3 Basic Procedures

Your Data history pane looks similar to the next figure.

7 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

When you modify anything in the Scope parameters dialog box, you must
click the Apply or OK button for the changes to take effect, and you must
rebuild your real-time application before connecting and starting it. If you
do not rebuild, an error dialog box will open. If you do not click Apply, your
executable will run, but it will use the old settings.

The reason why you need to rebuild is because the model checksum
includes settings from the Scope block used for signal logging. If the
model checksum does not match the checksum in the generated code, the
real-time application cannot run. Always rebuild your real-time application
after changing Scope parameters.

Entering Signal and Triggering Properties
Data is saved to the MATLAB workspace through a Simulink Scope block.
Signal and triggering properties need to be set only when you are running
a real-time application. If you are running a simulation, you can skip this
procedure.

3-28

Signal Logging to the MATLAB Workspace

After you create a Simulink model and add a Scope block, you can enter the
signal and triggering properties for logging to the MATLAB workspace. This
procedure uses the Simulink model rtwin_model.mdl as an example and
assumes you have already loaded that model:

1 In the Simulink window, and from the Tools menu, click External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

2 Click the Signal & Triggering button.

The External Signal & Triggering dialog box opens.

3 Click the Select all button. From the Source list, choosemanual. From
the Mode list, choose normal.

The X under Signal selection designates that a signal has been tagged
for data collection, and T designates that the signal has been tagged as
a trigger signal.

4 In the Duration field, enter the number of sample points in a data buffer.
For example, if you have a sample rate of 1000 samples/second and a stop
time of 10 seconds, you could enter

10000

The Duration value is related to the Limit data points to last value in
the Scope parameters dialog box. The smaller of either value limits the
number of sample points saved to the MATLAB workspace. We recommend
that you do not select the Limit data points to last check box; use the
Duration value to set the number of sample points saved. To clear the
Limit data points to last check box, see “Entering Scope Parameters”
on page 3-26.

The Duration value specifies the number of contiguous points of data to be
collected in each buffer of data. We recommend that you enter a Duration
value equal to the total number of sample points that you need to collect
rather than relying on a series of buffers to be continuous.

3-29

3 Basic Procedures

If you enter a value less than the total number of sample points, you will
lose sample points during the time needed to transfer values from the data
buffer to the MATLAB workspace. Real-Time Windows Target ensures that
points are continuous only within one buffer. Between buffers, because of
transfer time, some samples will be omitted.

We also recommend setting the time axis for Simulink Scope blocks equal
to the sample interval (in seconds) times the number of points in each
data buffer. This setting will display one buffer of data across the entire
Simulink Scope plot.

The External Signal & Triggering dialog box looks similar to the next figure.

5 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click Close to apply the changes to your model and close the dialog box.

You must click the Apply or Close button on the External Signal &
Triggering dialog box for the changes you made to take effect. Generally it
is not necessary to rebuild your real-time application.

3-30

Signal Logging to the MATLAB Workspace

Plotting Logged Signal Data
You can use the MATLAB plotting functions for visualizing non-real-time
simulated data or real-time application data.

After running your real-time application and logging data to the MATLAB
workspace, you can plot the data. This procedure uses the Simulink model
rtwin_model.mdl as an example, and assumes you saved your data to the
variable ScopeData.

1 In the MATLAB window, type

ScopeData

MATLAB lists the structure of the variable ScopeData. The variable
ScopeData is a MATLAB structure containing fields for the time vector,
signal structure, and a string containing the block name.

ScopeData =
time: [10000x1 double]

signals: [1x1 struct]
blockName: 'rtwin_model/Scope'

To list the contents of the structure signals, type

ScopeData.signals

MATLAB lists the structure of the variable ScopeData.signals. This
structure contains one or more vectors of signal data depending on the
number of signal inputs to the Scope block.

ans =
values: [10000x1 double]

dimensions: 1
label: ''
title: []

plotStyle: 1

2 To plot the first 1000 points, type

plot(ScopeData.time(1:1000),ScopeData.signals.values(1:1000))

3-31

3 Basic Procedures

MATLAB plots the first 1000 samples from 0.0000 to 0.9990 second.

3 The variable ScopeData is not automatically saved to your hard disk. To
save the variable ScopeData, type

save ScopeData

MATLAB saves the scope data to the file ScopeData.mat.

3-32

Signal Logging to a Disk Drive

Signal Logging to a Disk Drive
• “Entering Scope Parameters” on page 3-33

• “Entering Signal and Triggering Properties” on page 3-36

• “Entering Data Archiving Parameters” on page 3-38

• “Plotting Logged Signal Data” on page 3-40

Signal logging is the process of saving (logging) data to a variable in your
MATLAB workspace and then saving that data to a MAT-file on your disk
drive. This allows you to use MATLAB functions for data analysis and
MATLAB plotting functions for visualization. Using the data archiving
feature to provide in the External Mode Control Panel, you can save data
to a file during execution. You cannot save data to a disk drive during a
simulation.

To use the data archiving feature with Real-Time Windows Target, you must
add a Scope block to your Simulink model, and you must execute a real-time
application.

Simulink external mode does not support data logging with Outport blocks in
your Simulink model. This means you do not enter or select parameters on
the Data I/O pane in the Configuration Parameters dialog box.

Entering Scope Parameters
You save data to a disk drive by first saving the data to the MATLAB
workspace through a Simulink Scope block. You need to set scope block
parameters for data to be saved.

After you create a Simulink model and add a Scope block, you can enter the
scope parameters for signal logging to a disk drive. This procedure uses the
Simulink model rtwin_model.mdl as an example, and assumes you have
already loaded that model.

3-33

3 Basic Procedures

Note If you entered the scope parameters for running a simulation, you
may want to look over this procedure, because the Scope parameters dialog
box is related to the External Signal & Triggering dialog box and the Data
Archiving dialog box.

1 In the Simulink window, double-click the Scope block.

A Scope window opens.

2 On the toolbar, click the Parameters button.

A Scope parameters dialog box opens.

3 Click the Data history tab.

4 Do one of the following:

• If you are running a simulation, you can select the Limit data points
to last check box, and enter the number of sample points to save.

• If you are running an execution, do not select the Limit data points to
last check box.

The Limit data points to last check box is related to the Duration value
in the External Signal & Triggering dialog box. The smaller of either value
limits the number of sample points saved to the MATLAB workspace.
When using Real-Time Windows Target, we recommend that you use the
Duration value to set the number of sample points you save. To set the
Duration value, see “Entering Signal and Triggering Properties” on page
3-36.

5 Select the Save data to workspace check box. In the Variable name
text box, enter the name of a MATLAB variable. The default name is
ScopeData.

3-34

Signal Logging to a Disk Drive

The Scope parameters dialog box is related to the Data Archiving dialog
box. In the Scope parameters dialog box, you must select the Save data
to workspace check box to be able to save data to a disk drive, for two
reasons:

• The data is first transferred from the data buffer to the MATLAB
workspace before being written to a MAT-file.

• The Variable name entered in the Scope parameters dialog box is the
same as the one in the MATLAB workspace and the MAT-file.

If you do not select the Save data to workspace check box, the MAT-files
for data logging will be created, but they will be empty.

6 From the Format list, choose eitherStructure with time, Structure, or
Array(compatible with Version 2.0 through Version 2.2). For example, to
save the sample times and signal values at those times, choose Structure
with time. Your Data history pane looks similar to the next figure.

7 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the dialog box.

3-35

3 Basic Procedures

You must rebuild your real-time application before connecting and starting
the application with changed settings. If you do not rebuild after making
changes, an error will occur.

Entering Signal and Triggering Properties
Data is saved to a disk drive by first saving the data to the MATLAB
workspace through a Simulink Scope block. Signal and triggering properties
need to be set when running a real-time application.

After you create a Simulink model and add a Scope block, you can enter
the signal and triggering properties for data logging to a disk drive. This
procedure uses the Simulink model rtwin_model.mdl as an example, and
assumes you have already loaded that model:

1 In the Simulink window, and from the Tools menu, click External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

2 Click the Signal & Triggering button.

The External Signal & Triggering dialog box opens.

3 Click the Select all button. From the Source list, choosemanual. From
the Mode list, choose normal.

The X under Signal selection designates that a signal has been tagged
for data collection, and T designates that the signal has been tagged as
a trigger signal.

4 In the Duration field, enter the number of sample points in a data buffer.
For example, if you have a sample rate of 1000 samples/second and a stop
time of 10 seconds, then enter

10000

The Duration value is related to the Limit data points to last value in
the Scope parameters dialog box. The smaller of either value limits the
number of sample points saved to the MATLAB workspace. We recommend
that you do not select the Limit data points to last check box, and use
the Duration value to set the number of sample points saved.

3-36

Signal Logging to a Disk Drive

The Duration value specifies the number of contiguous points of data to be
collected in each buffer of data. We recommend that you enter a Duration
value equal to the total number of sample points you need to collect for a
run. If you enter a value much less than the total number of sample points,
you may lose logging sample points due to the time needed to transfer
values from the data buffer to the MATLAB workspace.

We also recommend setting the time axis for Simulink Scope blocks equal
to the sample interval (in seconds) times the number of points in each
data buffer. This setting will display one buffer of data across the entire
Simulink Scope plot.

The External Signal & Triggering dialog box looks similar to the next figure.

5 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click Close to apply the changes to your model and close the dialog box.

You must click the Apply or Close button on the External Signal &
Triggering dialog box for the changes you made to take effect, but you do
not have to rebuild your real-time application.

3-37

3 Basic Procedures

Entering Data Archiving Parameters
The Data Archiving dialog box is related to the Scope parameters dialog
box. In the Scope parameters dialog box, you must select the Save data to
workspace check box to be able to save data to a disk drive, for two reasons:

• The data is first transferred from the scope data buffer to the MATLAB
workspace before being written to a MAT-file.

• The Variable name entered in the Scope parameters dialog box is the
same as the one in the MATLAB workspace and the MAT-file. Enabling
the data to be saved enables a variable named with the Variable name
parameter to be saved to a MAT-file.

If you do not select the Save data to workspace check box in the Scope
parameters dialog box, the MAT-files for data logging will be created, but
they will be empty.

After you create a Simulink model, you can enter the Data Archiving
Parameters for data logging to a disk drive:

1 In the Simulation window, and from the Tools menu, click External Mode
Control Panel.

The External Mode Control Panel dialog box opens.

3-38

Signal Logging to a Disk Drive

2 Click the Data Archiving button.

The External Data Archiving dialog box opens. This dialog box allows you
to specify data archiving options.

3 Select the Enable archiving check box.

4 In the Directory text box, enter the path to a directory on your disk drive.
For example, if your MATLAB working directory is named mwd, enter

c:\mwd

5 In the File text box, enter the filename prefix for the data files to be saved.
For example, enter

data

MATLAB names the files data_0.mat, data_1.mat, etc. The number of
files equals the total sample points. For example, if you set Duration to
Total sample points, then only one file is created.

6 Select the Append file suffix to variable names check box.

3-39

3 Basic Procedures

Within each MAT-file, a variable is saved with the same name you
entered in the Variable name text box (Data history pane on the
Scope parameters dialog box). By selecting the Append file suffix to
variable names check box, the same suffix that is added to the MAT-file
is added to the variable name. For example, if you entered the variable
name ScopeData, then within the file data_0.mat will be a variable
ScopeData_0.

Your External Data Archiving dialog box looks similar to the next figure.

7 Click the Close button.

The parameters you entered are applied to your model.

There is no Apply button with this dialog box. You must click the Close
button for the changes you make to take effect.

Plotting Logged Signal Data
You can use the MATLAB plotting functions for visualization of your
non-real-time simulated data or your real-time executed data.

After running your real-time application and logging data to a disk drive, you
can plot the data. This procedure uses the Simulink model rtwin_model.mdl
as an example, and assumes you saved your data to the variable ScopeData:

1 In the MATLAB window, type

ScopeData

3-40

Signal Logging to a Disk Drive

MATLAB lists the structure of the variable ScopeData. The variable
ScopeData is a MATLAB structure containing the fields time vector, signal
structure, and a string containing the block name.

ScopeData =
time: [10000x1 double]

signals: [1x1 struct]
blockName: 'rtwin_model/Scope'

2 To list the MAT-files saved to your disk drive, type

dir *.mat

MATLAB displays the MAT-files in your current working directory.

ScopeData.mat

3 To clear the MATLAB workspace and load the scope data, type

clear
load ScopeData
who

MATLAB displays

Your variables are:
ScopeData

3-41

3 Basic Procedures

4 To plot the first 1000 points, type

plot(ScopeData.time(1:1000), ScopeData_0.signals.values(1:1000))

MATLAB plots the first 1000 samples from 0.0000 to 0.9990 second.

3-42

Parameter Tuning

Parameter Tuning
• “Types of Parameters” on page 3-43

• “Changing Model Parameters” on page 3-44

Simulink external mode connects your Simulink model to your real-time
application. The block diagram becomes a graphical user interface to the
real-time application.

Types of Parameters
You can change parameter values while running the real-time application by
changing the values in

• Block parameters — Change block parameters by changing the values
in the dialog boxes associated with the Simulink blocks. Once you change
a value, and click OK, the new value is downloaded to the real-time
application.

Note Opening a dialog box for a source block causes Simulink to pause.
While Simulink is paused, you can edit the parameter values. You must
close the dialog box to have the changes take effect and allow Simulink
to continue.

• MATLAB variables — Change MATLAB variables by entering the
changes through the MATLAB command line, and then press Ctrl+D for
the changes to be downloaded to your executable. An alternative method to
download parameters is to click Update Diagram from the Edit menu
in your Simulink window. Simply changing the value of the MATLAB
variable at the MATLAB command line is not sufficient for Simulink to
know that the value has changed.

Simulink external mode also supports side-effects functions. For example,
given an expression in a Gain block of 2*a+b, the expression is evaluated and
the resulting value is exported to the real-time application during execution.

3-43

3 Basic Procedures

When a parameter in a Simulink model is changed, the communication
module rtwinext.mex* transfers the data to the external real-time
application and changes the model parameters. Only the parameters that do
not result in model structure modification can be changed. If the structure
is modified, you must recompile the model. Model structure changes are
detected automatically using model checksum and reported to the MATLAB
window to avoid conflicts.

Changing Model Parameters
You must use Simulink external mode to change model parameters. While
external mode is running, you can open Simulink blocks and change
parameter values. External mode will transfer the new value to the real-time
application.

Note Opening a dialog box for a source block causes Simulink to pause. While
Simulink is paused, you can edit the parameter values. You must close the
dialog box to have the changes take effect and allow Simulink to continue.

After you start running your real-time application, you can change parameters
and observe the changes to the signals. To start a real-time application, see
“Running a Real-Time Application” on page 3-21.

The following procedure uses the Simulink model rtwin_model.mdl as
an example. It assumes you have created a real-time application and are
executing it.

3-44

Parameter Tuning

1 From the Simulation menu, click Start Real-Time.

The real-time execution starts running and signal data is displayed in
the Scope window.

2 From the Simulink block diagram, double-click the Transfer Function block.

The Block Parameters: Transfer Fcn dialog box opens.

3 In the Denominator field, change 70 to 30. Click OK.

3-45

3 Basic Procedures

The effect of changing a block parameter is shown in the Scope window.

3-46

4

Advanced Procedures

Real-Time Windows Target provides driver blocks for more than 200 I/O
boards. These driver blocks connect the physical world to your real-time
application.

I/O Boards (p. 4-2) Install I/O boards and enter
hardware information

I/O Driver Blocks (p. 4-9) Select analog and digital driver
blocks from the Simulink library and
add to your Simulink model

Using Analog I/O Drivers (p. 4-29) Convert normalized I/O signals to
more meaningful model parameters

4 Advanced Procedures

I/O Boards
• “Installing and Configuring I/O Boards and Drivers” on page 4-2

• “ISA Bus Board” on page 4-6

• “PCI Bus Board” on page 4-7

• “PC/104 Board” on page 4-8

• “Compact PCI Board” on page 4-8

• “PCMCIA Board” on page 4-8

Typically I/O boards are preset from the factory for certain base addresses,
voltage levels, and unipolar or bipolar modes of operation. Boards often
include switches or jumpers that allow you to change many of these initial
settings. For information about setting up and installing any I/O board, read
the board manufacturer’s documentation.

For an online list of all I/O boards that Real-Time Windows Target supports,
see Supported I/O Boards.

Installing and Configuring I/O Boards and Drivers
A Real-Time Windows Target model connects to a board by including an I/O
driver block. This block provides an interface to the board’s device driver
and all board-specific settings. The device drivers provided by Real-Time
Windows Target usually provide the same flexibility of settings offered by the
board manufacturer. You can enter I/O board settings by using the I/O Block
Parameters dialog box; setting jumpers and switches on the board; or both.
The three types of board settings are:

• Software selectable — Specify the desired settings in the I/O Block
Parameters dialog box. The driver writes the settings you specify to the
board. Examples include A/D gain inputs and selecting unipolar or bipolar
D/A outputs.

• Hardware selectable and software readable — Specify the desired
settings by configuring jumpers or switches on the board. The driver reads
the settings you selected and displays them in the I/O Block Parameters
dialog box.

4-2

http://www.mathworks.com/products/supportedio.html?prodCode=WT

I/O Boards

• Hardware selectable, but not software readable — Set jumpers or
switches on the physical board, and then enter the same settings in the I/O
Block Parameters dialog box. These entries must match the hardware
jumpers or switches you set on the board. This type of setting is necessary
when the board manufacturer does not provide a means for the I/O driver
to write or read all board settings. Examples include base address, D/A
gain, and differential or single-ended A/D inputs.

You can configure a Real-Time Windows Target model to use an I/O board
whether or not the board exists in the computer, but you will not be able to run
the model until the board is installed with any jumpers or switches correctly
set. Details of installation and configuration depend on the data transfer
direction and the specific board, but are essentially similar in all cases.
Details for various types of boards and drivers appear later in this chapter.

The following instructions use a Humusoft AD512 I/O board as an example,
configure the board for analog input, and assume that you have physically
configured and installed the board in your computer before you add its driver
to your model. Customize the steps to provide the results that you need.

To install and configure an I/O board and its driver,

1 Install the board in the computer, setting any jumpers or switches as
needed.

2 Clone an appropriate Input or Output driver block to your model from the
Real-Time Windows Target library in the Simulink Library Browser.

4-3

4 Advanced Procedures

3 Double-click the cloned I/O driver block.

The I/O Block Parameters dialog box opens. For an Analog Input block, the
dialog box initially looks like this:

4 Click Install new board. From the list that appears, point to a
manufacturer, then select a board type. For example, point to Humusoft,
then click AD512:

4-4

I/O Boards

The I/O board dialog box opens. The name of this dialog box depends on
which I/O board you selected. The box for the Humusoft AD512 board
looks like this:

5 Select one of the following, as appropriate to the board:

• For an ISA bus board, enter a hexadecimal base address. This value must
match the base address jumpers or switches set on the physical board.
For example, to enter a base address of 0x300, in the Address box type

300

You can also select the base address by checking boxes A9 through A3.

• For a PCI bus board, enter the PCI slot or check Auto-detect.

6 The I/O Block Parameters dialog also lets you set other I/O block
parameters, such as the sample time. Set such parameters as needed.

7 Click Test.

Real-Time Windows Target tries to connect to the selected board, and if
successful, displays the following message.

4-5

4 Advanced Procedures

8 Click OK on the message box, and again on the I/O Block Parameters
dialog box.

The I/O Block Parameters dialog box closes, and the parameter values are
included in your Simulink model.

Multiple Boards of Identical Type
When multiple boards of identical type exist, you must execute the complete
installation sequence for each board, just as you would if the boards were of
different types. Thus two identical PCI boards would result in two entries in
the drop-down list of installed boards. The entries would differ only in the
PCI slot number shown for each board.

Autodetecting Multiple Boards. The Autodetect feature cannot be used
to locate multiple boards of the same type. You must specify their PCI slot
numbers manually.

Multiple Driver Blocks for One Board
Once you have used the I/O Block Parameters dialog box to add a board and
configure its driver, you can add additional I/O driver blocks that connect to
the same board from other locations in the model. To accomplish this, clone
the appropriate driver block, open its I/O Block Parameters dialog box, and
choose the board from the list of installed boards.

Scope of Driver Block Parameters. All I/O driver blocks that use a given
board share identical parameters. You need to specify these parameters
only once, when you first add the board and configure its driver. If you
subsequently change a parameter in any driver block connected to a board,
the same change occurs in all the other driver blocks connected to that board.

ISA Bus Board
Most ISA bus I/O boards are preset with a base address of 0x300. If you are
using multiple I/O boards or other boards (for example, network cards) that
already use the address 0x300, you must set your board with another base
address.

4-6

I/O Boards

In the I/O board dialog box, enter the same base address that you set on the
physical board. You open the I/O board dialog box from any I/O driver Block
Parameters dialog box.

PCI Bus Board
You do not have to set a base address with a PCI board. The plug-and-play
feature of Microsoft Windows assigns a PCI slot number. You can enter the
slot number in the I/O board dialog box, or you can let the driver determine
the slot number for you. You open the I/O board dialog box from any I/O driver
Block Parameters dialog box.

We recommend that before you use a PCI or PCMCIA board, you install the
drivers supplied by the board manufacturer. Real-Time Windows Target
does not use these manufacturer-supplied drivers. However, they sometimes
initiate the plug-and-play recognition of the board. Without these drivers
installed, the board might be invisible to your computer and Real-Time
Windows Target.

Writing PCI Bus Board Drivers
Real-Time Windows Target applications cannot use Windows DLLs and
kernel-mode drivers, which are not suitable for real-time operation. The
device drivers supported by Real-Time Windows Target are listed at
Supported I/O Boards. If no driver is listed for the board that you want to use,
you may be able to write a custom device driver.

A user-written custom device driver must program the board directly
at the register level, which is the technique used by all supported
Real-Time Windows Target drivers. If the board registers are I/O-mapped,
Real-Time Windows Target supports such programming. If the registers
are memory-mapped, programming them would require mapping their
memory region to Real-Time Windows Target address space, which Real-Time
Windows Target does not support for user-written drivers.

If you want to use an unsupported board that you believe should be supported,
or you need assistance with user-written Real-Time Windows device drivers,
including the case of a board with memory-mapped registers, contact The
MathWorks Technical Support.

4-7

http://www.mathworks.com/products/supportedio.html?prodCode=WT
http://www.mathworks.com/contact_TS.html

4 Advanced Procedures

PC/104 Board
Most PC/104 bus I/O boards are preset with a base address of 0x300. If you
are using multiple I/O boards or other boards (for example, network cards)
that already use the address 0x300, you must set your board with another
base address.

In the I/O board dialog box, enter the same base address that you set on the
physical board. You open the I/O board dialog box from any I/O driver Block
Parameters dialog box.

Compact PCI Board
Using a compact PCI board requires that you use a compact PC (industrial
PC). In addition, you need to install Windows, MATLAB, Simulink, and
Real-Time Windows Target on the compact PC.

PCMCIA Board
The plug-and-play feature of Microsoft Windows assigns a base address
automatically. You can enter this address in the I/O board dialog box, or you
can let the driver determine the address for you. You open the I/O board
dialog box from any I/O driver Block Parameters dialog box.

We recommend that before you use a PCI or PCMCIA board, you install the
drivers supplied by the board manufacturer. Real-Time Windows Target
does not use these manufacturer-supplied drivers. However, they sometimes
initiate the plug-and-play recognition of the board. Without these drivers
installed, the board might be invisible to your computer and Real-Time
Windows Target.

4-8

I/O Driver Blocks

I/O Driver Blocks
• “Real-Time Windows Target Library” on page 4-9

• “Simulink Library” on page 4-11

• “Analog Input Block” on page 4-12

• “Analog Output Block” on page 4-14

• “Digital Input Block” on page 4-16

• “Digital Output Block” on page 4-17

• “Counter Input Block” on page 4-20

• “Encoder Input Block” on page 4-22

• “Other Input and Other Output Blocks” on page 4-24

• “Output Signals from an I/O Block” on page 4-24

• “Variations with Channel Selection” on page 4-25

The Analog Input, Analog Output, Digital Input, Digital Output, Counter
Input, and Encoder Input blocks provide an interface to your physical I/O
boards and your real-time application. They ensure that the C code generated
with Real-Time Workshop correctly maps block diagram signals to the
appropriate I/O channels.

You can have multiple blocks associated with each type of I/O block and
board. For example, you can have one Analog Input block for channels 1 to 4
and another block for channels 5 to 8.

For information about writing custom I/O driver blocks to work with
Real-Time Windows Target, see Appendix A, “Custom I/O Driver Blocks
Reference”.

Real-Time Windows Target Library
This topic describes how to access the Real-Time Windows Target library
from the MATLAB Command Window. Real-Time Windows Target I/O driver
blocks allow you to select and connect specific analog channels and digital
lines to your Simulink model through I/O driver blocks.

4-9

4 Advanced Procedures

After you create a Simulink model, you can add an I/O block. This procedure
adds an Analog Input block and uses the Simulink model rtwin_model.mdl
as an example:

1 In the MATLAB window, type

rtwinlib

The Real-Time Windows Target block library window opens.

2 Click and drag the Analog Input block to your Simulink model. Remove the
Signal Generator block and connect the Analog Input block to the Transfer
Function block.

4-10

I/O Driver Blocks

Your Simulink model will look similar to the following figure.

You next task is to enter parameters for the Analog Input block. See “Analog
Input Block” on page 4-12.

Simulink Library
This topic describes how to access the Real-Time Windows Target library from
the Simulink window. Real-Time Windows Target I/O driver blocks allow
you to select and connect specific analog channels and digital lines to your
Simulink model through I/O driver blocks.

After you create a Simulink model, you can add an I/O block. This procedure
adds an Analog Input block and uses the Simulink model rtwin_model.mdl
as an example:

1 In the Simulink window, and from the View menu, click Library Browser.

The Simulink Library Browser opens.

2 In the left column, double-click Real-Time Windows Target. Click
and drag the Analog Input block to your Simulink model. Remove the
Signal Generator block and connect the Analog Input block to the Transfer
Function block.

You next task is to enter parameters for the Analog Input block. See “Analog
Input Block” on page 4-12.

4-11

4 Advanced Procedures

Analog Input Block
Real-Time Windows Target I/O blocks allow you to select and connect specific
analog channels to your Simulink model.

After you add an Analog Input block to your Simulink model, you can enter
the parameters for this I/O driver. This procedure uses Humusoft’s AD512 I/O
board as an example:

1 Double-click the Analog Input block.

The Block Parameters: Analog Input dialog box opens.

2 In the Sample time box, enter the same value you entered in the Fixed
step size box from the Configuration Parameters dialog box. For example,
enter

0.001

3 In the Input channels box, enter a channel vector that selects the analog
input channels you are using on this board. The vector can be any valid
MATLAB vector form. For example, to select all eight analog input
channels on the AD512 board, enter

[1,2,3,4,5,6,7,8] or [1:8]

If you want to use the first three analog input channels, enter

[1,2,3]

4 From the Input range list, choose the input range for all of the analog
input channels you entered in the Input channels box. For example, with
the AD512 board, choose -5 to 5 V.

If you want the input range to be different for different analog channels,
you need to add an I/O block for each different input range.

4-12

I/O Driver Blocks

5 From the Block output signal list, choose from the following options:

• Volts — Returns a value equal to the analog voltage.

• Normalized unipolar — Returns a full range value of 0 to +1 regardless
of the input voltage range. For example, an analog input range of 0 to +5
volts and -5 to +5 volts would both be converted to 0 to +1.

• Normalized bipolar — Returns a full range value of -1 to +1 regardless
of the input voltage range.

• Raw — Returns a value of 0 to 2n -1. For example, a 12-bit A/D converter
would return values of 0 to 212 -1 (0 to 4095). The advantage of this
method is the returned value is always an integer with no roundoff
errors.

If you chose Volts, your dialog box will look similar to the next figure.

6 Select one of the following:

• Click the Apply button to apply the changes to your model and leave
the dialog box open.

• Click the OK button to apply the changes to your model and close the
Block Parameters: Analog Input dialog box.

4-13

4 Advanced Procedures

Analog Output Block
Real-Time Windows Target I/O blocks allow you to select and connect specific
analog channels to your Simulink model.

After you add an Analog Output block to your Simulink model, you can enter
the parameters for this I/O driver. This procedure uses Humusoft’s AD512 I/O
board as an example:

1 Double-click the Analog Output block.

The Block Parameters: Analog Output dialog box opens.

2 In the Sample time box, enter the same value you entered in the Fixed
step size box from the Configuration Parameters dialog box. For example,
enter

0.001

3 In the Output channels box, enter a channel vector that selects the
analog input channels you are using on this board. The vector can be any
valid MATLAB vector form. For example, to select both analog output
channels on the AD512 board, enter

[1,2] or [1:2]

4 From the Output range list, choose the input range for all of the analog
input channels you entered in the Input channels box. For example, with
the AD512 board, choose -5 to 5 V.

If you want the input range to be different for different analog channels,
you need to add an I/O block for each different input range.

5 From the Block input signal list, choose from the following options:

• Volts — Expects a value equal to the analog output voltage.

• Normalized unipolar — Expects a value between 0 and +1 that is
converted to the full range of the output voltage regardless of the output
voltage range. For example, an analog output range of 0 to +5 volts and
-5 to +5 volts would both be converted from values between 0 and +1.

4-14

I/O Driver Blocks

• Normalized bipolar — Expects a value between -1 and +1 that is
converted to the full range of the output voltage regardless of the output
voltage range.

• Raw — Expects a value of 0 to 2n -1. For example, a 12-bit A/D converter
would expect a value between 0 and 212 -1 (0 to 4095). The advantage of
this method is the expected value is always an integer with no roundoff
errors.

6 Enter the initial value for each analog output channel you entered in the
Output channels box. For example, if you entered [1,2] in the Output
channels box, and you want an initial value of 0 volts, enter [0,0].

7 Enter a final value for each analog channel you entered in the Output
channels box. For example, if you entered [1,2] in the Output channels
box, and you want final values of 0 volts, enter [0,0].

If you chose Volts, your dialog box will look similar to the next figure.

4-15

4 Advanced Procedures

8 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the Block
Parameters: Analog Output dialog box.

Digital Input Block
Real-Time Windows Target I/O blocks allow you to select and connect specific
digital lines or digital channels to your Simulink model.

After you have added a Digital Input block to your Simulink model, you can
enter the parameters for this I/O driver. This procedure uses Humusoft’s
AD512 I/O board as an example:

1 Double-click the Digital Input block.

The Block Parameters: Digital Input dialog box opens.

2 In the Sample time box, enter the same value you entered in the Fixed
step size box from the Configuration Parameters dialog box. For example,
enter

0.001

3 In the Input channels box, enter a channel vector that selects the
digital input channels you are using on this board. The vector can be any
valid MATLAB vector form. For example, to select all eight digital input
channels on the AD512 board, enter

[1,2,3,4,5,6,7,8] or [1:8]

If you want to use the first four digital input lines, enter

[1,2,3,4]

If you have one 8-bit digital channel, enter [1]. If you have two 8-bit digital
channels, enter [1 9], and from the Channel mode list, choose Byte.

4-16

I/O Driver Blocks

4 From the Channel mode list, choose one of the following options:

• Bit — Returns a value of 0 or 1.

• Byte — Groups eight digital lines into one digital channel and returns
a value of 0 to 255.

If you chose Bit, your dialog box will look similar to the next figure.

5 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the Block
Parameters: Digital Input dialog box.

Digital Output Block
Real-Time Windows Target I/O blocks allow you to select and connect specific
digital lines or digital channels to your Simulink model.

After you have added a Digital Output block to your Simulink model, you can
enter the parameters for this I/O driver. This procedure uses Humusoft’s
AD512 I/O board as an example:

4-17

4 Advanced Procedures

1 Double-click the Digital Output block.

The Block Parameters: Digital Output dialog box opens.

2 In the Sample time box, enter the same value you entered in the Fixed
step size box from the Configuration Parameters dialog box. For example,
enter

0.001

3 In the Output channels box, enter a channel vector that selects the
digital output channels you are using on this board. The vector can be any
valid MATLAB vector form. For example, to select all eight digital output
channels on the AD512 board, enter

[1,2,3,4,5,6,7,8] or [1:8]

If you want to use the first four digital output lines, enter

[1,2,3,4]

If you have one 8-bit digital channel, enter [1]. If you have two 8-bit digital
channels, enter [1 9], and from the Channel mode list, choose Byte.

4 From the Channel mode list, choose from one of the following:

• Bit — Expects a value of 0 or 1.

• Byte — Expects a value of 0 to 255 that is converted to one digital
channel of eight digital lines.

5 Enter the initial values for each digital output line or channel you entered
in the Output channels box. For example, if you entered [1,2,3,4] in
the Output channels box, and you want initial values of 0 and 1, enter

[0,0,1,1]

If you choose Byte from the Channel mode list, enter a value between 0 and
255 for each digital output channel. For example, for one byte (8 digital
lines) with an initial value of 25, enter [25]. For two bytes (16 digital lines)
with initial values of 25 and 50, enter [25 50].

4-18

I/O Driver Blocks

6 Enter a final value for each digital output channel you entered in the
Output channels box. For example, if you entered [1,2,3,4] in the
Output channels box, and you want final values of 0, enter

[0,0,0,0]

If you choose Byte from the Channel mode list, enter a value between 0 and
255 for each digital output channel.

If you chose Bit, your dialog box will look similar to the next figure.

7 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the Block
Parameters: Digital Output dialog box.

4-19

4 Advanced Procedures

Counter Input Block
This Real-Time Windows Target I/O block allows you to select and connect
specific counter input channels to your Simulink model.

After you have added a Counter Input block to your Simulink model, you can
enter the parameters for this I/O driver. This procedure uses Humusoft’s
MF604 I/O board as an example:

1 Double-click the Counter Input block.

The Block Parameters: Counter Input dialog box opens.

2 In the Sample time box, enter the same value you entered in the Fixed
step size box from the Configuration Parameters dialog box. For example,
enter

0.001

3 In the Input channels box, enter a channel vector that selects the
counter input channels you are using on this board. The vector can be any
valid MATLAB vector form. For example, to select all four counter input
channels on the MF604 board, enter

[1,2,3,4] or [1:4]

4 From Reset after read, which determines if the counter should be reset
to zero after its value has been read, choose one of the following options:

• never — Do not reset after reading.

• always — Always reset after reading.

• level — Reset after reading if block input is nonzero. This will add an
input to the Counter Input block.

• rising edge — Reset after reading if block input changes from zero
to nonzero between the last two successive readings. This will add an
input to the Counter Input block.

4-20

I/O Driver Blocks

• falling edge — Reset after reading if the block input changes from
nonzero to zero between last two successive readings. This will add an
input to the Counter Input block.

• either edge — Reset after reading if the block input changes either
from zero to nonzero or from nonzero to zero between the last two
successive readings. This will add an input to the Counter Input block.

5 From Clock input active edge, which determines which clock edge
should increment the counter, select

• rising — Low to high transitions

• falling — High to low transitions

Not all counter chips support selecting the input edge. In this case, the
pull-down menu will reflect the supported option only.

6 From Gate input functionality, which defines the action of the counter’s
gate pin, select

• none — Gate is disabled.

• enable when high — Counting is disabled when the gate is low and
enabled when the gate is high.

• enable when low — Counting is disabled when the gate is high and
enabled when the gate is low.

• start on rising edge — Counting is disabled until low to high
transition of the gate occurs.

• start on falling edge — Counting is disabled until high to low
transition of the gate occurs.

• reset on rising edge — Counter is reset when low to high transition
of the gate occurs.

• reset on falling edge — Counter is reset when high to low transition
of the gate occurs.

• latch on rising edge — The count of the counter is remembered
when low to high transition of the gate occurs.

• latch on falling edge — The count of the counter is remembered
when high to low transition of the gate occurs.

4-21

4 Advanced Procedures

• latch & reset on rising edge — The count of the counter is
remembered and then the counter is reset when low to high transition of
the gate occurs.

• latch & reset on falling edge — The count of the counter is
remembered and then the counter is reset when high to low transition of
the gate occurs.

Not all counter chips support all gate modes. Only supported gate modes
are shown in the pull-down menu.

7 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the Block
Parameters: Counter Input dialog box.

Encoder Input Block
This Real-Time Windows Target I/O block allows you to select and connect
specific encoder input channels to your Simulink model.

After you have added an Encoder Input block to your Simulink model, you
can enter the parameters for this I/O driver. This procedure uses Humusoft’s
MF604 I/O board as an example:

1 Double-click the Encoder Input block.

The Block Parameters: Encoder Input dialog box opens.

2 In the Sample time box, enter the same value you entered in the Fixed
step size box from the Configuration Parameters dialog box. For example,
enter

0.001

4-22

I/O Driver Blocks

3 In the Input channels box, enter a channel vector that selects the encoder
input channels you are using on this board. The vector can be any valid
MATLAB vector form. For example, to select all four encoder input
channels on the MF604 board, enter

[1,2,3,4] or [1:4]

4 Encoders typically use two sets of stripes, shifted in phase, to optically
detect the amplitude and direction of movement. The Quadrature mode
parameter specifies which encoder stripe edges should be counted.

• double — Counts the rising edges from both stripe sets

• single — Counts the rising edges from one stripe set

• quadruple — Counts rising and falling edges from both stripe sets

Quadruple mode yields four times more pulses per revolution than the
single mode. Therefore, quadruple is more precise and is recommended
unless other parameters dictate otherwise.

5 The encoder interface chip has a reset pin in addition to encoder inputs.
This pin is usually connected to the index output of the encoder. However,
it can be connected to any signal or not be used at all. The Reset input
function specifies the function of this pin.

• gate — Enables encoder counting

• reset — Level reset of the encoder count

• rising edge index — Resets the encoder count on the rising edge

• falling edge index — Resets the encoder count on the falling edge

6 The encoder interface chip has a built-in lowpass filter that attempts to
filter out any high frequencies, which are interpreted as noise. The Input
filter clock frequency is the cutoff frequency (Hz) of this filter. The
cutoff frequency you specify is rounded to the nearest frequency supported
by the chip.

If the encoder is moving slowly and high-frequency noise is present, employ
the filter to eliminate the noise. This keeps the noise from being counted
as encoder pulses. If the encoder is moving quickly, the filter can filter out
all of the high-frequency pulses, including those you want to count. In this

4-23

4 Advanced Procedures

case, consider leaving the filter disabled by setting the cutoff frequency to
Inf.

7 Do one of the following:

• Click Apply to apply the changes to your model and leave the dialog
box open.

• Click OK to apply the changes to your model and close the Block
Parameters: Encoder Input dialog box.

Other Input and Other Output Blocks
The Real-Time Windows blocks Other Input and Other Output are used for
interfacing input and output signals that the six previously described blocks
do not accommodate. The Other Input and Other Output blocks are used
rarely, and for only a few drivers. See the driver documentation for details.

Output Signals from an I/O Block
I/O driver blocks output multiple signals as a vector instead of individual
channels or lines. To connect the individual channels and lines to parts of
your Simulink model, you need to separate the vector with a Demux block.

After you add and configure an I/O driver block in your Simulink model, you
can separate and connect the output signals from the blocks:

1 In the Simulink window, and from the View menu, click Library Browser.

The Simulink Library Browser opens.

2 In the Simulink library, click Signal Routing. From the list in the right
column, click and drag Demux to your Simulink model.

3 Double-click the Demux block. The Block Parameters: Demux dialog box
opens. Enter the number of lines leaving the Demux block. For example, if
you entered three channels in the Analog Input driver block, enter 3 in the
Number of outputs box.

4-24

I/O Driver Blocks

4 Click OK.

5 Finish making connections and selecting display options.

• Connect the Analog Input block to the Demux block input.

• Connect each of the Demux block output lines to the input of other blocks.

• In the Simulink window, and from the Format menu, click Port/Signal
Displays > Wide Nonscalar Lines, and click Signal Dimensions.

In this simple example, inputs 1 and 2 are not connected, but they could be
connected to other Simulink blocks.

Variations with Channel Selection
For a better understanding of how to specify device settings when using both
analog and digital signals, this section uses the I/O board DAS-1601 from
Keithley-Metrabyte as an example. The following is a specification summary
of the DAS-1601 board:

• Analog input (A/D) — 16 single-ended or 8 differential analog inputs
(12-bit), polarity is switch configured as either unipolar (0 to 10 volts) or
bipolar (+/- 10 volts). Gain is software configured to 1, 10, 100, and 500.

• Digital input — Four unidirectional digital inputs

• Analog output (D/A) — Two analog outputs (12-bit). Gain is switch
configured as 0 to 5 volts, 0 to 10 volts, +/- 5 volts, or +/- 10 volts

4-25

4 Advanced Procedures

• Digital output — Four unidirectional digital outputs

• Base address — Switch configured base address

This section explores different configurations for input signals.

Once an Analog Input block has been placed in the model and the I/O board
selected and configured, you can set up the Analog Input block to handle
input signals.

Single analog input — The most basic case is for a single analog input
signal that will be physically connected to the first analog input channel on
the board. In the Block Parameter: Analog Input dialog box, and the Input
channels box, enter

1 or [1]

The use of brackets is optional for a single input.

Input vector with differential analog — Analog channels are numbered
starting with channel 1 and continue until you reach a number corresponding
to the maximum number of analog signals supported by the I/O board.

In the case of the DAS-1601, when configured as differential inputs, eight
analog channels are supported. The analog input lines are numbered 1
through 8. The complete input vector is

[1 2 3 4 5 6 7 8] or [1:8]

If you want to use the first four differential analog channels, enter

[1 2 3 4]

4-26

I/O Driver Blocks

Input vector with single-ended analog — Now, assume your DAS-1601
board is configured to be single-ended analog input. In this case, 16 analog
input channels are supported. The complete input vector is

[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16] or [1:16]

To use the first four single-ended analog input channels, enter

[1 2 3 4] or [1:4]

The next figure shows the resulting block diagram.

We do not recommend specifying more channels than you actually use in your
block diagram. This results in additional overhead for the processor with A/D
or D/A conversions. In this case, for example, even though some channels are
not actually used in the block diagram, these channels are still converted.

You could attach terminator blocks to channels 4 and 5 inside your block
diagram after passing the Analog Input block vector in to a Demux block.
Adding terminator blocks provides you with graphical information in your
block diagram to clearly indicate which channels you connected and which are
available. The penalty is that even the terminated channels are converted,
adding some computational overhead.

4-27

4 Advanced Procedures

The next figure shows the block implementation.

Depending on the board and the number of channels used, I/O conversion time
can affect the maximum sample rate that can be achieved on your system.
Rather than converting unused channels, we recommend specifying only the
set of channels that are actually needed for your model.

4-28

Using Analog I/O Drivers

Using Analog I/O Drivers
• “I/O Driver Characteristics” on page 4-29

• “Normalized Scaling for Analog Inputs” on page 4-30

Control systems have unique requirements for I/O devices that Real-Time
Windows Target supports.

For information about writing custom I/O device drivers to work with
Real-Time Windows Target, see Appendix A, “Custom I/O Driver Blocks
Reference”.

I/O Driver Characteristics
Real-Time Windows Target uses off-the-shelf I/O boards provided by
many hardware vendors. These boards are often used for data acquisition
independently of Real-Time Windows Target. In such environments,
board manufacturers usually provide their own I/O device drivers for data
acquisition purposes. This use differs significantly from the behavior of
drivers provided with Real-Time Windows Target.

In data acquisition applications, data is often collected in a burst or frame
consisting of many points, perhaps 1,000 or possibly more. The burst of data
becomes available once the final point is available. This approach is not
suitable for use in automatic control applications since it results in latencies
equal to 1000 * Tsample for each point of data.

In contrast, drivers used by Real-Time Windows Target capture a single point
of data at each sample interval. Considerable effort is made to minimize the
latency between collecting a data point and using the data in the control
system algorithm. This is the reason why a board that specifies a maximum
sample rate (for data acquisition) might be described as achieving sample
rates well in excess of the rates that are achievable in Real-Time Windows
Target. For data acquisition, such boards are usually acquiring data in bursts
and not in a point-by-point fashion, which is more appropriate for stable
control systems.

4-29

4 Advanced Procedures

Normalized Scaling for Analog Inputs
Real-Time Windows Target allows you to normalize I/O signals internal to
the block diagram. Generally, inputs represent real-world values such as
angular velocity, position, temperature, pressure, and so on. This ability to
choose normalized signals allows you to

• Apply your own scale factors

• Work with meaningful units without having to convert from voltages

When using an Analog Input block, you select the range of the external
voltages that are received by the board, and you choose the block output
signal. For example, the voltage range could be set to 0 to +5 V, and the
block output signal could be chosen as Normalized unipolar, Normalized
bipolar, Volts, or Raw.

If you prefer to work with units of voltage within your Simulink block
diagram, you can choose Volts.

If you prefer to apply your own scaling factor, you can choose Normalized
unipolar or Normalized bipolar, add a Gain block, and add an offset to
convert to a meaningful value in your model.

If you prefer unrounded integer values from the analog-to-digital conversion
process, you can choose Raw.

0 to +5 Volts and Normalized Bipolar
From the Input range list, choose 0 to +5 V, and from the Block output
signal list, choose Normalized bipolar. This example converts a
normalized bipolar value to volts, but you could also easily convert directly
to another parameter in your model.

0 to 5 volts --> ([-1 to 1] normalized + 1) * 2.5

4-30

Using Analog I/O Drivers

In your block diagram, you can do this as follows.

0 to +5 Volts and Normalized Unipolar
From the Input range list, choose 0 to +5 V, and from the Block output
signal list, choose Normalized unipolar. This example converts a
normalized unipolar value to volts, but you could also easily convert directly
to another parameter in your model.

0 to 5 volts --> ([0 to 1] normalized * 5.0

In your block diagram, you can do this as follows.

-10 to +10 Volts and Normalized Bipolar
From the Input range list, choose -10 to +10 V, and from the Block
output signal list, choose Normalized bipolar. This example converts a
normalized bipolar value to volts, but you could also easily convert directly
to another parameter in your model.

-10 to 10 volts --> [-1 to +1] normalized * 10

4-31

4 Advanced Procedures

In your block diagram, you can do this as follows.

-10 to +10 Volts and Normalized Unipolar
From the Input range list, choose -10 to +10 V, and from the Block
output signal list, choose Normalized unipolar. This example converts a
normalized bipolar value to volts, but you could also easily convert directly
to another parameter in your model.

-10 to 10 volts --> ([0 to 1] normalized - 0.5) * 20

In your block diagram, do this as follows.

Normalized Scaling for Analog Outputs
Analog outputs are treated in an equivalent manner to analog inputs.

If the voltage range on the D/A converter is set to 0 to +5 volts, and the
Block input signal is chosen as Normalized bipolar, then a Simulink
signal of amplitude -1 results in an output voltage of 0 volts. Similarly, a
Simulink signal of amplitude +1 results in an output voltage of +5 volts.

A voltage range on the D/A converter is set to -10 to +10 volts, and the
Block input signal is chosen as Normalized bipolar, then a Simulink

4-32

Using Analog I/O Drivers

signal of amplitude -1 results in an output voltage of -10 volts. Similarly, a
Simulink signal of amplitude +1 results in an output voltage of +10 volts.

This may require that you adjust your signal amplitudes in Simulink using
a Gain block, Constant block, and Summer block depending on the selected
voltage range.

4-33

4 Advanced Procedures

4-34

5

Troubleshooting

Solutions have been worked out for some common errors and problems that
can occur when you are using Real-Time Windows Target.

Building Older Models (p. 5-2) Building older models

Plots Not Visible in Simulink Scope
Block (p. 5-3)

Plots not visible in Scope blocks

Failure to Connect to Target (p. 5-4) Target connection failure

Sample Time Too Fast (p. 5-5) Sample times are too small

S-Functions Using Math Functions
(p. 5-6)

S-functions that use math functions

Restricted Space for S-Function
Local Variables (p. 5-7)

S-function local variable restriction

5 Troubleshooting

Building Older Models
If you are building an older model for Real-Time Windows Target, you might
get a message like the following:

"Real-Time Workshop utilizes device specific information (e.g.,

microprocessor word sizes) to reproduce a bit true representation

of the diagram. This information is not specified in this model.

If you continue, Real-Time Workshop will use a 32-bit generic

target setting."

This is simply a warning, and you can ignore the message. To eliminate this
message, you can use the rtwinconfigset command, as follows:

rtwinconfigset('<model_name>')

5-2

Plots Not Visible in Simulink Scope Block

Plots Not Visible in Simulink Scope Block
For data to plot correctly in a Simulink Scope block, you must specify the
following:

• External mode selected from the Simulation menu in the Configuration
Parameters dialog

• Connect to target selected from the Simulation menu

• Select one or more signals for capture (designated with "X") in the External
Signal & Triggering dialog box from the Tools > External Mode Control
Panel menu.

• Duration * Fixed Step Size close to or less than the X range in the
Scope block

• Correct mode (one-shot vs. normal)

• Appropriate signal levels to allow triggering

• Y range on Simulink Scope block axes large enough to span the signal
amplitude

• X range

• Arm when connect to target in the External Signal & Triggering dialog
box or Arm Trigger in the External Mode Control Panel

• Start real-time code selected from the Simulation menu

If you are unable to see signals plotted in your Simulink Scope blocks after all
of the above items have been selected, your system might have insufficient
CPU time. To determine CPU utilization, type rtwho. The rtwho command
returns information about MATLAB performance. The value returned is
an indicator of how much loading your model places on the CPU. If Scope
blocks fail to plot, this can be an indication that insufficient time is available
between sample intervals to allow data to be transferred back to the MATLAB
environment where the plotting is performed. To test for this condition, you
can run one of the demonstration models, or you can try running your model
at a significantly slower rate to determine whether this is the cause. We
recommend that MATLAB performance not fall below 80%.

5-3

5 Troubleshooting

Failure to Connect to Target
Possible Problem — When trying to connect to the target, the Simulation
Errors dialog box displays

Checksum mismatch. Target code needs to be rebuilt.

Solution — This indicates that the model structure has changed since the last
time code was generated. You must rebuild the real-time application. If your
model fails to build successfully, we recommend that you delete .mk and .obj
files from the Real-Time Workshop project directory, and then select Build
from the Tools menu.

Possible Problem — When trying to connect to the target, the Simulink
Diagnostic dialog box displays

External mode MEX-file "win_tgt" does not exist or is not on the

MATLAB path.

Solution — Real-Time Windows Target Versions 1.0 and 1.5 used the MEX-file
win_tgt. For Real-Time Windows Target Version 2.2 and later, the MEX-file
name was changed to rtwinext. If you create a new Simulink model, the new
filename is entered correctly. If you have Simulink models where you used
Real-Time Windows Target 1.0 or 1.5, you need to change the filename using
the following procedure:

1 In the Simulink window, and from the Tools menu, click External Mode
Control Panel.

2 On the External Mode Control Panel dialog box, click the Target interface
button.

3 In the MEX-file for external mode text box, enter

rtwinext

4 Click OK.

5-4

Sample Time Too Fast

Sample Time Too Fast
During a run, you might not see any output in the Scope window. This
could indicate that the sample time is too small. In the MATLAB Command
Window, type

rtwho

Check the value for MATLAB performance. A value less than 80% indicates
that your sample time might be too small.

In general, we recommend that you start by choosing a slow sample rate. For
example, select a sample time of 0.01 second, and confirm that your system
runs correctly and plots are displayed. Should you select a sample rate that
exceeds the capability of your computer, an error message is displayed and
real-time execution is terminated. If this occurs, select a slower sample
rate. Then rebuild the model, connect to the target, and start the real-time
application again. You must rebuild the real-time application after changing
the sample time.

Check the MATLAB performance value returned when you type rtwho. If
MATLAB performance is in the range of 98% or so, then consider decreasing
your sample time by one order of magnitude.

If you notice either slow updates of Scope blocks or a complete failure to plot
data in the Scope blocks, you might be reaching the upper threshold for
the sample rate on your hardware. Plotting data has a lower priority than
execution of your real-time application.

5-5

5 Troubleshooting

S-Functions Using Math Functions
Possible problem — When you create your own S-functions that include math
functions, the S-functions compile, but you cannot build the application.

Solution — Add the Real-Time Windows Target header to your S-function.
For example, add

#include<math.h>
#include"rtwintgt.h"

The header #include<math.h> must precede the header
#include"rtwintgt.h".

5-6

Restricted Space for S-Function Local Variables

Restricted Space for S-Function Local Variables
The Real-Time Windows kernel provides stack space for at most 2 KB of local
variables. Code generated by Real-Time Windows Target never exceeds this
limit, but a user-written S-function could do so. Executing such code can
cause the application to fail or the computer to reboot. If you create your own
S-functions, ensure that local variables do not exceed the stack size limit
of 2 KB.

5-7

5 Troubleshooting

5-8

A

Custom I/O Driver Blocks
Reference

Custom I/O device drivers can be used in combination with Real-Time
Windows Target. We do not recommend using Analog Input, Analog Output,
Digital Input, or Digital Output drivers as a starting point for creating
custom device drivers. You can write custom I/O device drivers to work with
Real-Time Windows Target.

I/O Register Access from S-Functions
Limitation (p. A-2)

Illustrates sample code for I/O
register access from S-functions
limitation

Incompatibility with Win32 API
Calls (p. A-3)

Describes incompatibility with
Win32 API calls

Unsupported C Functions (p. A-4) Lists unsupported C functions

Supported C Functions (p. A-5) Lists supported C functions

A Custom I/O Driver Blocks Reference

I/O Register Access from S-Functions Limitation
For Windows 2000 and Windows XP, drivers can access I/O registers only
from the real-time kernel and not from Simulink. To ensure that drivers do
not attempt to access I/O registers from Simulink S-functions, enter code
fragments like the following as appropriate:

#ifndef MATLAB_MEX_FILE
/* we are in RTWin kernel, safe to do board I/O */
#else
/* we are in Simulink, don't do board I/O */
#endif

A-2

Incompatibility with Win32 API Calls

Incompatibility with Win32 API Calls
The Real-Time Windows Target kernel intercepts the interrupt from the
system clock. It then reprograms the system clock to operate at a higher
frequency for running your real-time application. At the original clock
frequency, it sends an interrupt to the Windows operating system to allow
Windows applications or any software using the Win32 API to run.

As a result, software that uses the Win32 API cannot be executed as a
component of your real-time application. Any software you use to write
I/O drivers must not have any calls to the Win32 API.

A-3

A Custom I/O Driver Blocks Reference

Unsupported C Functions
If you create your own custom I/O driver blocks, you should first check for C
functions that are supported by Real-Time Windows Target.

Functions that use the Windows operating system are not supported with
Real-Time Windows Target. This is because the kernel intercepts the system
clock and first runs the real-time application. If there is time left before the
next sample time, the kernel might allow a Windows application or function
to run.

The following list includes many, but not all, of the unsupported functions:

• File I/O — fopen, freopen, fclose, fread, fwrite, fputs, fputc, fgets,
fgetc, gets, getc, getchar, puts, putc, putchar, fflush, setbuf, setvbuf

• Console I/O — printf, fprintf, sprintf, vfprintf, vprintf, vsprintf,
fscanf, scanf, sscanf

• Process management — spawn, exit, abort, atexit

• Signals and exceptions — signal, longimp, raise

• Time functions — clock, time, difftime, asctime, ctime, difftime,
gmtime, localtime, mktime, strftime

• Win32 API functions — No Windows API functions are supported.

A-4

Supported C Functions

Supported C Functions
You can use ANSI C functions that do not use the Windows operating system
in your custom blocks or I/O drivers. The following includes a partial list of
supported functions:

• Data conversion — abs, atof, atoi, atol, itoa, labs, ltoa, strtod,
strtol, strtoul, ultoa

• Memory allocation — calloc, free, malloc

Note Memory allocation is not an operation that can be done in real time.
To work with Real-Time Windows Target, memory management must occur
before real-time simulation begins. Simulation switches into real-time
after mdlStart, so you can allocate memory in mdlInitializeSizes or
mdlStart. You cannot allocate memory in any function after mdlStart,
such as mdlOutputs or mdlUpdate.

• Memory manipulation — _memccpy, memcpy, memchr, memcmp, _memicmp,
memmove, memset

• String manipulation — strcat, strchr, strcmp, strcpy, strcspn,
_strdup, _stricmp, strlen, _strlwr, strncat, strncmp, strncpy,
_strnset, strpbrk, strrchr, _strrev, _strset, strspn, strstr, strtok,
strupr

• Mathematical — acos, asin, atan, atan2, ceil, cos, cosh, div, exp,
fabs, floor, fmod, frexp, ldexp, ldiv, log, log10, max, min, modf, pow,
rand, sin, sinh, sqrt, srand, tan, tanh, uldiv

• Character class tests and conversion — isalnum, isalpha, _isascii,
iscntrl, isdigit, isgraph, islower, isprint, ispunct, isspace,
isupper, isxdigit, isxupper, isxlower, _toascii, tolower, toupper

• Searching and sorting — bsearch, qsort

• Dummy functions — exit, fprintf, prinf

A-5

A Custom I/O Driver Blocks Reference

A-6

B

Examples

Use this list to find examples in the documentation.

B Examples

Simulink Model Examples
“Entering Configuration Parameters for Simulink” on page 3-6
“Entering Scope Parameters for Signal Tracing” on page 3-7
“Running a Non-Real-Time Simulation” on page 3-10
“Specifying a Default Real-Time Windows Target Configuration Set” on
page 3-11

Real-Time Application Examples
“Entering Simulation Parameters for Real-Time Workshop” on page 3-13
“Entering Scope Parameters for Signal Tracing” on page 3-16
“Creating a Real-Time Application” on page 3-18
“Entering Additional Scope Parameters for Signal Tracing” on page 3-19
“Running a Real-Time Application” on page 3-21
“Running a Real-Time Application from the MATLAB Command Line”
on page 3-24

Signal Logging to MATLAB Workspace Examples
“Entering Scope Parameters” on page 3-26
“Entering Signal and Triggering Properties” on page 3-28
“Plotting Logged Signal Data” on page 3-31

Signal Logging to Disk Drive Examples
“Entering Scope Parameters” on page 3-33
“Entering Signal and Triggering Properties” on page 3-36
“Entering Data Archiving Parameters” on page 3-38
“Plotting Logged Signal Data” on page 3-40

B-2

Parameter Tuning Examples

Parameter Tuning Examples
“Changing Model Parameters” on page 3-44

I/O Board Examples
“Installing and Configuring I/O Boards and Drivers” on page 4-2
“Real-Time Windows Target Library” on page 4-9
“Analog Input Block” on page 4-12
“Analog Output Block” on page 4-14
“Digital Input Block” on page 4-16
“Digital Output Block” on page 4-17
“Counter Input Block” on page 4-20
“Encoder Input Block” on page 4-22
“Output Signals from an I/O Block” on page 4-24

B-3

B Examples

B-4

Index

IndexA
A/D. See analog-to-digital
adding

Analog Input block 4-9
I/O driver blocks 4-9
input blocks 4-9

analog input
normalized scaling 4-30

Analog Input block
configuring 4-12

Analog Output block
configuring 4-14

analog-to-digital
channel selection 4-25

application
Real-Time Windows Target 1-6

C
capturing and displaying signals 1-2
changing parameters

parameter tuning 1-7
channel selection

entering configurations 4-25
compact PCI

installing 4-8
compatibility

with the MathWorks software 1-4
compiler

Open Watcom C/C++ only 1-5
computer

PC-compatible 1-9
configuring

Analog Input block 4-12
Analog Output block 4-14
Counter Input block 4-20
Digital Input block 4-16
Digital Output block 4-17
Encoder Input block 4-22
I/O boards and drivers 4-2

connecting
real-time application 3-19
Simulink model 3-19

Counter Input block
configuring 4-20

creating
real-time application 3-18
Simulink model 1-12

custom I/O drivers
incompatible with Win32 A-3

D
D/A. See digital-to-analog
data archiving parameters

entering 3-38
logging data to disk drive 3-38

data buffers 1-14
default configuration set 3-11
demo library

opening 2-18
Real-Time Windows Target 2-18

Demux block
separating I/O signals 4-24

description
Simulink external mode 1-13

device drivers
channel selection 4-25
custom I/O A-1
writing custom A-1

Digital Input block
configuring 4-16

Digital Output block
configuring 4-17

digital-to-analog
channel selection 4-25

directories
installed 2-7
MATLAB working 2-7
project 2-7

Index-1

Index

Real-Time Workshop working 2-7
working 2-7

disk drive
plotting logged data 3-40
signal logging 3-33

E
Encoder Input block

configuring 4-22
entering

data archiving parameters 3-38
scope properties 3-33
signal and triggering properties 3-36
simulation parameters for Real-Time

Workshop 3-13
simulation parameters for Simulink 3-6

execution
real-time 1-11
running in real time 1-12

external interface MEX-file
rtwinext 5-4
win_tgt 5-4

external mode
description 1-13
parameter tuning 1-7

F
failure to connect

troubleshooting 5-4
features

signal logging 1-6
signal tracing 1-6

files
application 2-7
external mode interface 2-7
I/O drivers 2-7
installed 2-7
kernel install command 2-7

make command 2-7
makefile 2-7
project directory 2-7
Real-Time Windows Target directory 2-7
system target 2-7
system target file 2-7
template makefile 2-7
working directory 2-7

H
hardware

system requirements 2-5

I
I/O blocks

Analog Input block 4-12
Analog Output block 4-14
Counter Input block 4-20
Digital Input block 4-16
Digital Output block 4-17
Encoder Input block 4-22
input and output 4-9
separating signals 4-24

I/O boards
compact PCI boards 4-8
configuring 4-2
installing 4-2
ISA bus 4-6
overview 4-2
PC/104 bus 4-8
PCI bus 4-7
PCMCIA 4-8

I/O drivers
characteristics 4-29
configuring 4-2
installing 4-2
using 4-29

input blocks

Index-2

Index

adding Analog Input blocks 4-9
overview 4-9

input/output
support 1-9

installing
compact PCI 4-8
I/O boards 4-2
I/O boards and drivers 4-2
kernel overview 2-10
Real-Time Windows Target 2-7
testing installation 2-14

ISA bus
installing 4-6

K
kernel

communication with hardware 1-4
installing 2-10
scheduler 1-4
timer interrupt 1-4
uninstalling 2-11

L
logging

data to disk drive 3-33
data archiving parameters 3-38

data to workspace 3-26

M
makefile 2-7
MathWorks

compatible software 1-4
Simulink blocks 1-4

MATLAB workspace
signal logging 3-26

memory management
limitation on A-5

model parameters

changing 3-44
parameter tuning 3-44

N
nonreal time

simulation 3-10
normalized scaling

analog input 4-30

O
opening demo library 2-18
output blocks

overview 4-9
overview

I/O boards 4-2
input blocks 4-9
installing kernel 2-10
output blocks 4-9
parameter tuning 3-43
real-time application 3-13
Real-Time Windows Target 1-2
system concepts 1-13
system requirements 2-5
testing installation 2-14

P
parameter tuning

changing model parameters 3-44
changing parameters 1-7
external mode 1-7
feature 1-7
overview 3-43

PCI bus
installing 4-7

PCMCIA bus
installing 4-8

plots not visible
troubleshooting 5-3

Index-3

Index

plotting
logged data from disk 3-40
logged data from workspace 3-31

R
real-time

control 1-2
execution 1-11
hardware-in-the-loop 1-2
signal processing 1-2

real-time application
and the development process 1-12
connecting to Simulink model 3-19
creating 3-18
overview 3-13
Real-Time Windows Target 1-6
Real-Time Workshop parameters 3-13
scope properties for signal tracing 3-16
simulation parameters for Real-Time

Workshop 3-13
software environment 1-6
starting 3-21
stopping 3-21

real-time kernel
Real-Time Windows Target 1-4
scheduler 1-4
software environment 1-4
timer interrupt 1-4

Real-Time Windows Target
application 1-6
custom I/O device drivers A-1
demo library 2-18
development process 1-12
files 2-7
installing kernel 2-10
overview 1-2
real-time application 1-6
real-time kernel 1-4
software environment 1-11

uninstalling kernel 2-11
what is it? 1-2

Real-Time Workshop
entering simulation parameters 3-13

requirements
hardware 2-5
software 2-6

rtvdp.mdl
Simulink model 2-14

RTWin configuration set 3-11
rtwinext

external interface MEX-file 5-4
running

execution in real time 1-12
real-time application 3-21
simulation in nonreal time 3-10

S
S-functions

C-code supported in 2-2
limitation on I/O register access A-2
limitation on memory management A-5
M-code not supported in 2-2
restricted stack space for local variables 5-7
using math functions in 5-6
Win32 calls not usable in 1-4

sample rates
excessive 2-17

sample time
too fast 5-5

scope properties
entering 3-33
entering for signal tracing 3-16
for signal logging to disk drive 3-33
for signal logging to workspace 3-26

separating
I/O signals 4-24

setting
initial working directory 2-9

Index-4

Index

working directory
from MATLAB 2-9
from the Desktop icon 2-9

signal and triggering
entering properties 3-28
properties 3-36

signal archiving. See signal logging
signal data

plotting from disk drive 3-40
plotting from workspace 3-31

signal logging
entering scope properties 3-26
feature 1-6
plotting data 3-31
signal and triggering properties 3-36
to disk drive 3-33
to MATLAB workspace 3-26

signal logging to disk drive
data archiving parameters 3-38
signal and triggering properties 3-36

signal logging to workspace
scope properties 3-26
signal and triggering properties 3-28

signal tracing
feature 1-6
scope properties 3-16

signals
capturing and displaying 1-2

simulation
nonreal time 3-10
running in nonreal time 1-12

simulation parameters
entering 3-6
for Real-Time Workshop 3-13

Simulink
compatibility 2-2
compatible software 1-4
required product 2-2
running a simulation 3-10

Simulink external mode

description 1-13
parameter tuning 1-7

Simulink model
and the development process 1-12
connect to real-time application 3-19
creating 1-12
rtvdp.mdl 2-14

software
system requirements 2-6

software environment
overview 1-11
real-time application 1-6
real-time kernel 1-4
requirements 2-6

starting
real-time application 3-21

stopping
real-time application 3-21

support
input/output 1-9

system concepts
data buffers 1-14
overview 1-13
transferring data 1-14

system requirements
hardware 2-5
overview 2-5
software 2-6
software environment 2-6

system target file 2-7

T
template makefile 2-7
testing installation

overview 2-14
transferring data 1-14
troubleshooting

failure to connect 5-4
incorrect MEX-file 5-4

Index-5

Index

plots not visible 5-3
sample time too fast 5-5

U
uninstalling

kernel 2-11
using

I/O device drivers 4-29

W
Win32

calls not usable in S-functions 1-4
incompatible with I/O drivers A-3

Windows Target. See Real-Time Windows Target
working directory

initial 2-9
setting

from MATLAB 2-9
from the Desktop icon 2-9

setting initial 2-9
writing customized device drivers A-1

Index-6

	toc
	Getting Started
	What Is Real-Time Windows Target?
	Expected User

	Features
	Real-Time Kernel
	Real-Time Application
	Signal Acquisition and Analysis
	Parameter Tuning

	Hardware Environment
	PC-Compatible Computer
	Input/Output Driver Support
	I/O Boards
	I/O Driver Block Library

	Software Environment
	Non-Real-Time Simulation
	Real-Time Execution
	Development Process

	System Concepts
	Simulink External Mode
	Data Buffers and Transferring Data

	Installation and Configuration
	Required Products
	MATLAB
	Simulink
	Real-Time Workshop

	Related Products
	System Requirements
	Hardware Requirements
	Software Requirements

	Real-Time Windows Target Installed Files
	Initial Working Directory
	Setting the Working Directory from the Desktop Icon
	Setting the Working Directory from MATLAB

	Real-Time Windows Target Kernel
	Installing the Kernel
	Uninstalling the Kernel

	Testing the Installation
	Running the Model rtvdp.mdl
	Displaying Status Information
	Detecting Excessive Sample Rates
	Demo Library

	Basic Procedures
	Simulink Model
	Creating a Simulink Model
	Entering Configuration Parameters for Simulink
	Entering Scope Parameters for Signal Tracing
	Running a Non-Real-Time Simulation
	Specifying a Default Real-Time Windows Target Configuration Set

	Real-Time Application
	Entering Simulation Parameters for Real-Time Workshop
	Entering Scope Parameters for Signal Tracing
	Creating a Real-Time Application
	Entering Additional Scope Parameters for Signal Tracing
	Running a Real-Time Application
	Running a Real-Time Application from the MATLAB Command Line

	Signal Logging to the MATLAB Workspace
	Entering Scope Parameters
	Entering Signal and Triggering Properties
	Plotting Logged Signal Data

	Signal Logging to a Disk Drive
	Entering Scope Parameters
	Entering Signal and Triggering Properties
	Entering Data Archiving Parameters
	Plotting Logged Signal Data

	Parameter Tuning
	Types of Parameters
	Changing Model Parameters

	Advanced Procedures
	I/O Boards
	Installing and Configuring I/O Boards and Drivers
	Multiple Boards of Identical Type
	Multiple Driver Blocks for One Board

	ISA Bus Board
	PCI Bus Board
	Writing PCI Bus Board Drivers

	PC/104 Board
	Compact PCI Board
	PCMCIA Board

	I/O Driver Blocks
	Real-Time Windows Target Library
	Simulink Library
	Analog Input Block
	Analog Output Block
	Digital Input Block
	Digital Output Block
	Counter Input Block
	Encoder Input Block
	Other Input and Other Output Blocks
	Output Signals from an I/O Block
	Variations with Channel Selection

	Using Analog I/O Drivers
	I/O Driver Characteristics
	Normalized Scaling for Analog Inputs
	0 to +5 Volts and Normalized Bipolar
	0 to +5 Volts and Normalized Unipolar
	-10 to +10 Volts and Normalized Bipolar
	-10 to +10 Volts and Normalized Unipolar
	Normalized Scaling for Analog Outputs

	Troubleshooting
	Building Older Models
	Plots Not Visible in Simulink Scope Block
	Failure to Connect to Target
	Sample Time Too Fast
	S-Functions Using Math Functions
	Restricted Space for S-Function Local Variables

	Custom I/O Driver Blocks Reference
	I/O Register Access from S-Functions Limitation
	Incompatibility with Win32 API Calls
	Unsupported C Functions
	Supported C Functions

	Examples
	Simulink Model Examples
	Real-Time Application Examples
	Signal Logging to MATLAB Workspace Examples
	Signal Logging to Disk Drive Examples
	Parameter Tuning Examples
	I/O Board Examples

	Index

